Watershed Processes Laboratory  

Publications

29. *Fratkin, M., Segura, C., Bywater-Reyes, S*. 2020. The influence of lithology on channel geometry and bed sediment organization in mountainous hillslope-coupled streams. Earth Surface Process and Landforms. Earth Surf. Process. Landforms, https://doi.org/10.1002/esp.4885.

The influence of lithology on channel geometry and bed sediment organization in mountainous hillslope-coupled streams

Sediment transport and channel morphology in headwater hillslope-coupled mountain streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remain poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel-bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometers of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non-alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel-size alluvium to sand-size, leading to bedrock exposure because of high diminution rates. Despite debris flows being more frequent in basalt basin, this system will likely display threshold-like characteristics over a longer period indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size, and available gravel for bed load transport

Funded by

Award # 1619700