A DNA based method for directed self assembly of cellulose nanocrystals into advanced nanomaterials

Anand Mangalam John Simonsen Oregon State University Corvallis, OR A.S. Benight Portland State University Portland, OR

Outline

Concept
Background
The experimental results

preliminary study

Conclusions

Application = tissue engineering

A need exists for biomedical implants that can match the mechanical properties of the tissue, then dissolve in the body at a predetermined rate to match the body's regeneration of the tissue, e.g. bone, skin

concept

SOURCES OF: CELLULOSE NANOCRYSTALS

Wood

© J. Harrington

Sugar Beets

Cotton

Barnacles (tunicin)

Bacterial Cellulose

CELLULOSE BIOSYNTHESIS

R.M. Brown, 1996. J. Mat. Sci. – Pure Appl. Chem. A33(10): 1345-1373 Slide from Wankei Wan, U. W. Ontario, London, ON, Canada

CELLULOSE NANOCRYSTAL PRODUCTION

Native cellulose - Semi crystalline Polymer (~70% crystalline).

TEM image of cellulose nanocrvstals

js_c-cn×lsn200nm.000 carboxylatd CN×L dried dispersion

abibli.taillatanta Min DC

~ 7 nm

L	19.531 nm
RMS	2.249 nm
	DC
Ra(lc)	0.384 nm
Rma×	1.722 nm
	0.802 nm
Rz Cnt	6
Radius	35.649 nm
Sigma	0.212 nm

21.639 nm
19.531 nm
6.743 nm
19.046 °
DC
0 Hz
0.0002 nm

carboxylatd CNXL dried dispe js_c-cnxlsn200nm.000

Cursor: fixed

Zoom: 2:1

Cen line: Off

Offset: Off

Cursor: fixed

Zoom: 2:1

Cen line: Off

Offset: Off

CELLULOSE NANOCRYSTALS

Cellulose source	Length	Cross section	Aspect ratio
Tunicate	100 nm – microns	10-20 nm	5 to > 100 (high)
Algal (Valonia)	> 1000 nm	10 to 20 nm	50 to > 10 nm (high)
Bacterial	100 nm – microns	5-10 x 30-50 nm	2 to > 100 (medium)
Cotton	200-350 nm	5 nm	20 to 70 (low)
Wood	100–300 nm	3 – 5 nm	20 to 50 (low)

Beck-Candanedo, et. al. Biomacromol. (2005) 6:1048-1054

Surface Area

	2		
	2		

E-glass fibers*	~1
Paper fibers	4
Graphite	25-300
Fumed silica	100-400
Fully exfoliated clay	~ 500
Cellulose nanocrystals**	250
Carbon nanotubes***	~ 100 - ?

*http://www.jm.com/engineered_products/filtration/products/microfiber.pdf ** Winter, W. presentation at ACS meeting, San Diego, March 2005 ***<u>http://www.ipme.ru/e-journals/RAMS/no_5503/staszczuk/staszczuk.pdf</u>.

MECHANICAL PROPERTIES

Material	Tensile strength GPa	Modulus GPa
cellulose crystal	7.5 ¹	145 ²
Glass fiber	4.8	86
Steel wire	4.1	207
Graphite whisker	21	410
Carbon nanotubes ³	11-63	270-970
	1. Marks. Cell wall med	hanics of tracheids 1967

2. Sturcova, et al. (2005) Biomacromol. 6, 1055

3. Yu, et al Science (2000) 287, 637

http://tigger.uic.edu/classes/phys/phys461/phys450/ANJUM04/DNA_helix.jpg

Branched structures

Seeman 2003

Pinto 2005

Figure 4. TEM image of the two-particle array. The pattern of alternating parallel rows of small and large gold particles is clearly visible. (Particles tend to aggregate on the mica surface outside the arrays, e.g., lower right corner of image.)

Pinto 2005

Fig. 1. AFM images of self-assembled SWNTs via hybridization of DNA, (a)-(d) are typical images from four different AFM samples.

Fig. 2. Typical AFM images of unfunctionalized SWNTs (a) and ssDNA-SWNTs (b).

Y. Lu et al. / Chemical Physics Letters 419 (2006) 390–393

Figure 2. Directional assembly of asymmetrically functionalized AuNPs into (A, B) cat paw, (C, D) satellite, and (E, F) dendrimer-like structures. Inset: scale bar = 20 nm.

Xiaoyang Xu, Nathaniel L. Rosi, Yuhuang Wang, Fengwei Huo, and Chad A. Mirkin*

JACS 2006, 128, 9286-9287

CNXL-DNA experiment

Surface modification of CNXLs

• Titration of C.CNXLs indicated the presence of 1.4 mmols of acid/ g CNXLs.

Araki et.al, Langmuir, 17: 21-27, 2001

AFM of Carboxy-CNXLs

Oligomers

 Dodecyl linker:

 5'-amino-C12-CAGTCAGATCAGGACATGAGATCAT

 GCTAGTCAGCTACGGTCACTGCTAGTCCGTAC GTACCATGTCATAGTGTAGGT-3'

- And compliment
- GC content = 49%
- $T_{m} = 70 \ ^{\circ}C$
- Purchased from IDT, Inc.

Oligomers

Hexamer linker:

- 5'-amino-C6-GCT CTA CCT GAC TAG CTC GT-3' and compliment
- GC content = 55%
- $-T_{m} = 56 \ ^{\circ}C$
- Purchased from Oligos, etc.

Classic EDC reaction

EDC = 1-Ethyl-3-[3-dimethylaminopropyl]**carbodiimide** Hydrochloride

Voicu 2004 Araki 2001 Deen 1990

Optimization of grafting reaction EDC/CNXL ratio

Molar ratio of EDC: COOH on CNXL

Optimization of grafting reaction DNA/CNXL ratio

Molar ratio ssDNA/CO2H

FTIR

- 1. Carboxy-CNXL, protonated
- 2. EDC-NHS activated carboxy-CNXL, pH 4.5
- 3. pH 7.5

Mix the complimentary strands together

ssDNA-CNXL

Duplex DNA-CNXL

Carboxy-CNXL

🔄 🖸 🍹 🔍 🕹 - 3.54 Ph

DLS equipment

-

. .

00000

Sample cell

Temp controller

MELLES CRIOT HANG LASER

photodiode

Dynamic light scattering results

Particle	Diameter (D _h) at 25°C
CNXL	90-100 nm
Carboxy-CNXL	120-130 nm
ssDNA-CNXL	140-158 nm
dsDNA-CNXL duplex	548-620 nm

DLS temperature cycling experiment

AFM of carboxy-CNXLs

AFM image – ssDNA-CNXL

AFM image – duplex DNA-CNXL

AFM image – duplex DNA-CNXL

AFM image – duplex DNA-CNXL

Section analysis of particle height

Conclusions

- CNXLs were successfully carboxylated
- Carboxy-CNXLs were successfully grafted with DNA oligomers
- The DNA on the grafted CNXLs duplexed and bound the CNXLs together
- The duplex formation was reversible via raising the temperature above the DNA melting point
- While the goal of a new tissue engineering material remains distant, we believe we have shown that this concept has potential for use in thermoplastically formable implants with programmable in vivo dissolution and other bio-based nanomaterials