Poly(vinyl alcohol) / Cellulose Barrier Films

Shweta Paralikar John Simonsen Wood Science & Engineering Oregon State University John Lombardi Ventana Research Corp.

OUTLINE

Introduction
Materials
Results and Discussion
Conclusions
Acknowledgements

Introduction

Barrier Films?

Designed to reduce/retard gas migration

Widely used in the food and biomedical industries

Another application is as a barrier to toxic chemicals

Chemical Vapor Barrier

To prevent the diffusion of toxic chemical vapors, while allowing water vapor to pass through

Should be tough and flexible

Useful in protective clothing

Materials

Poly(vinyl alcohol) = PVOH

- Nontoxic, good barrier for oxygen, aroma, oil and solvents
- Prepared by partial or complete hydrolysis of poly(vinyl acetate)

Structure:

PVOH Water Stability

PVOH films have poor resistance to water

Crosslinking agent reduces water sorption and the crosslinks also act as a barrier to diffusion

Poly(acrylic acid)-PAA

Poly(acrylic acid) PAA:

Crosslinking reaction

Source: Sanli, O., et al. Journal of applied polymer science, 91(2003)

Heat treatment forms ester linkages

Cellulose Nanocrystals-(CNXLs)

CNXLs were prepared by acid hydrolysis of cellulose obtained from cotton

PVOH

Objectives

- Prepare chemical barrier films with PVOH/ PAA/ CNXL system
- To understand the chemistry and physics of this system
- Select optimum time and temperature for heat treatment
- Find combination which allows moisture to pass through but restricts diffusion of toxic chemical vapors
- Select combination which is flexible and tough
- Surface modify CNXLs to improve interaction with matrix

Methods

Film Preparation

Testing methods

- Water solubility Optimize heat treatment
- Fourier Transform Infrared Spectroscopy Bond analysis
- Polarized Optical Microscopy Dispersion
- Water Vapor Transmission Rate (WVTR)
- Universal Testing Machine Mechanical properties
- Differential Thermogravimetric Analysis Thermal degradation
- Chemical Vapor Transmission Rate (CVTR)

Preparation of the Blends

- 5 wt % solution of PVOH and PAA
- 1 wt % solution of dispersed CNXLs in DI water

Composition	0% CNXL	10% CNXL	20% CNXL
0% PAA	0/0	0/10	0/20
10% PAA	10/0	10/10	10/20
20% PAA	20/0	20/10	20/20

Remaining composition of the film consists of PVOH

Film Preparation

Compositions were mixed, sonicated and then air dried for 40 hours

The thickness of the film was controlled by the concentration (%solids) of the dispersion before drying

Heat treatment optimization

Evaluate via water solubility test

- At 125 °C/1 hr films were completely soluble in water after a day
- At 185 °C/1hr color of the films changed to brown
- At 150 °C and 170 °C/45 min films were clear and had good water resistance

Total % Solubility after 72 hours of soaking time

Fourier Transform Infrared Spectroscopy

PAA

Red: Heat treated film

Blue: Non heat treated film

FTIR of 10% CNXL/10% PAA/80% PVOH

Red: Heat treated film

Blue: Non heat treated film

Wavenumbers (cm⁻¹)

Polarized Optical Microscopy Dispersion of CNXLs

a) 5% CNXL/ 10%PAA

b) 10% CNXL/ 10% PAA c) 15

c) 15% CNXL/ 10% PAA

Water Permeability Water Vapor Transmission Rate

Test were conducted at 30°C and 30% relative humidity

$$J(Flux) = \frac{M}{A*t} \frac{Mass \ change \ (g)}{Area \ (m^2)*time \ (day)}$$

Composition

Mechanical tensile testing

27 micron thick films were cut into a dogbone shape

Tensile Modulus

Ultimate Tensile Strength

Toughness

% Elongation

Thermal degradation Thermo gravimetric Analysis

•Change in weight with increasing temperature

•Test is run from room temperature to 600°C

•Ramping 20°C/min

PAA boosts initial T_{degradation} CNXL no effect

Chemical Vapor Transmission Rate-CVTR

ASTM standard F 1407-99a (Standard method of resistance of chemical protective clothing materials to liquid permeation).

Permeant = 1,1,2 Trichloroethylene (TCE), listed in CERCLA and EPCRA as hazardous

CVTR Assumptions

- The assumptions made for the experimental setup are as follows.
 - 1) Mass transfer occurs in the z-direction only, as the lateral directions are sealed
 - 2) The temperature and relative humidity of the system remains constant throughout the experiment
 - 3) A semi-steady state mass transfer occurs, where the flux becomes constant after a certain time interval
 - A) The concentration of the simulant outside the film is zero as it is swept away by the air in hood

Time, h

Chemical Vapor Transmission Rate

Surface Modification of CNXLs

4OBJECTIVES

To improve the interaction between CNXLs and PVOH

To understand if the CVTR observations are more influenced by CNXLs or PAA

Surface modification of CNXLs

Source: Araki et.al, Langmuir, 17: 21-27, 2001.

- Titration of C.CNXLs indicated the presence of 1.4 mmols of acid/ g CNXLs
- Titration of PAA indicated the presence of 13.2 mmols of acid/ g PAA

Acid content (mmols) of C.CNXLs+PAA = Acid content (mmols) of 10 wt% PAA

Methods

Polarized optical microscopy

Water vapor transmission

Thermal degradation

Chemical vapor transmission

Dispersion of C.CNXLs

CNXLs

10%

C.CNXLs

10%

Water Vapor Transmission Rate

Flux : $g / m^2 * day$

CVTR

Thermal degradation DTGA

Conclusions

- 170 °C temperature and 45 minutes of heat treatment were found to be optimum temperature and time to reduce dissolution of films
- CNXLs were well dispersed in blend films of PVOH and PAA up to 10% by weight content
- The presence of CNXLs with PAA crosslinking almost doubles the strength, stiffness and toughness, while the elongation is reduced by 20% compared to the control (PVOH)
- The CVTR experiments show a significant increase in the time lag and reduced flux compared to pure PVOH

Conclusions

- C.CNXLs show better dispersion at 15% filler loading than CNXLs
- C.CNXLs showed slightly reduced flux and increased time lag
- DTGA showed significant increase in thermal stability
- Toughness does not alter to a great extent

Acknowledgements

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2003-35103-13711.