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Introduction

Barrier Films?
™ Designed to reduce/retard gas migration

™ Widely used in the food and biomedical
Industries

™ Another application is as a barrier to toxic
chemicals



Chemical Vapor Barrier

™ To prevent the diffusion of toxic chemical vapors, while
allowing water vapor to pass through

™ Should be tough and flexible

® Useful in protective clothing



Materials
™ Poly(vinyl alcohol) = PVOH

* Nontoxic, good barrier for oxygen, aroma,
oil and solvents

 Prepared by partial or complete hydrolysis
of poly(vinyl acetate)
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PVOH Water Stability

@ PVOH films have poor resistance to water

™ Crosslinking agent reduces water sorption

and the crosslinks also act as a barrier to
diffusion
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Poly(acrylic acid)-PAA

@ Poly(acrylic acid) PAA:
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Crosslinking reaction
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Source: Sanli, O., et al. Journal of applied polymer science, 91( 2003)

™ Heat treatment forms ester linkages




Cellulose Nanocrystals-
(CNXLS)

™ CNXLs were prepared by acid hydrolysis of
cellulose obtained from cotton
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Proposed structure
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Objectives

™ Prepare chemical barrier films with
PVOH/ PAA/ CNXL system

™ To understand the chemistry and physics of this system
# Select optimum time and temperature for heat treatment

® Find combination which allows moisture to pass through
but restricts diffusion of toxic chemical vapors

™ Select combination which is flexible and tough

® Surface modify CNXLs to improve interaction with matrix



Methods

& Film Preparation

“ Testing methods

™ Water solubility - Optimize heat treatment

™ Fourier Transform Infrared Spectroscopy - Bond analysis

™ Polarized Optical Microscopy - Dispersion

™ Water Vapor Transmission Rate (WVTR)

™ Universal Testing Machine - Mechanical properties

® Differential Thermogravimetric Analysis - Thermal degradation
® Chemical Vapor Transmission Rate (CVTR)



Preparation of the Blends

® 5wt % solution of PVOH and PAA
1 wt % solution of dispersed CNXLs in DI water

Composition | 0% CNXL | 10% CNXL | 20% CNXL
0% PAA 0/0 0/10 0/20
10% PAA 10/0 10/10 10/20
20% PAA 20/0 20/10 20/20

*Remaining composition of the film consists of PVOH




Film Preparation

™ Compositions were mixed, sonicated and then air
dried for 40 hours

™ The thickness of the film was controlled by the
concentration (%solids) of the dispersion before
drying



Heat treatment optimization

N
™ Evaluate via water solubllity test

“ At 125 °C/1 hr films were completely soluble
In water after a day

< At 185 °C/1hr color of the films changed to
brown

“ At 150 °C and 170 °C/45 min films were
clear and had good water resistance



Total % solubility

Total % Solubility after 72 hours of soaking time
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Absorbance

Fourier Transform Infrared

Spectroscopy
= PVOH = PAA
Red: Heat treated film Blue: Non heat treated film
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FTIR of 10% CNXL/10% PAA/80% PVOH

Red: Heat treated film Blue: Non heat treated film
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Polarized Optical Microscopy
Dispersion of CNXLs

a) 5% CNXL/ 10%PAA b) 10% CNXL/ 10% PAA c) 15% CNXL/ 10% PAA



Water Permeability
Water Vapor Transmission Rate

™ Test were conducted at 30°C /g é
and 30% relative humidity 3353

M Mass change (g)

J (Flux) =
e A*t Area(m?)*time (day)




WVTR
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Mechanical tensile testing

™ 27 micron thick films were cut into a dogbone
shape

& Strain rate: 1 mm/min

Stress vs Strain Curve
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Tensile Modulus, GPa
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Utimate tensile strength, MPe
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Energy to break, Nmm
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% Elongation
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Thermal degradation
Thermo gravimetric Analysis

«Change in weight with
Increasing temperature

eTest is run from room
temperature to 600°C

Ramping 20°C/min
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Chemical Vapor Transmission
Rate-CVTR

™ ASTM standard F 1407-99a (Standard method of
resistance of chemical protective clothing materials to
liquid permeation).

™ Permeant = 1,1,2 Trichloroethylene (TCE), listed In
CERCLA and EPCRA as hazardous



CVTR Assumptions

™ The assumptions made for the experimental
setup are as follows.

» 1) Mass transfer occurs in the z-direction only, as the
lateral directions are sealed

» 2) The temperature and relative humidity of the
system remains constant throughout the experiment

» 3) A semi-steady state mass transfer occurs, where
the flux becomes constant after a certain time
Interval

» 4) The concentration of the simulant outside the film
IS zero as it is swept away by the air in hood
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Chemical Vapor Transmission Rate
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Surface Modification of CNXLS

+OBJECTIVES

™ To improve the interaction between CNXLs
and PVOH

™ To understand if the CVTR observations
are more influenced by CNXLs or PAA



Surface modification of CNXLS
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Source: Araki et.al, Langmuir, 17: 21-27, 2001.

e Titration of C.CNXLs indicated the presence of 1.4 mmols of acid/ g
CNXLs

o Titration of PAA indicated the presence of 13.2 mmols of acid/ g PAA
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Methods

™ Polarized optical microscopy
= Water vapor transmission
™ Thermal degradation

™ Chemical vapor transmission



Dispersion of C.CNXLs

CNXLs C.CNXLs
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Water Vapor Transmission Rate

O C.CNXL |
B CNXL

Composition

Flux : g/ m? * day
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Thermal degradation DTGA
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Conclusions

™ 170 °C temperature and 45 minutes of heat treatment
were found to be optimum temperature and time to
reduce dissolution of films

™ CNXLs were well dispersed in blend films of PVOH and
PAA up to 10% by weight content

™ The presence of CNXLs with PAA crosslinking almost
doubles the strength, stiffness and toughness, while the
elongation is reduced by 20% compared to the control
(PVOH)

™ The CVTR experiments show a significant increase Iin
the time lag and reduced flux compared to pure PVOH



Conclusions

™ C.CNXLs show better dispersion at 15% filler loading
than CNXLs

® C.CNXLs showed slightly reduced flux and increased
time lag

™ DTGA showed significant increase in thermal stability

™ Toughness does not alter to a great extent



Acknowledgements

i This project was supported by the National
Research Initiative of the USDA Cooperative
State Research, Education and Extension
Service, grant number 2003-35103-13711.



	Poly(vinyl alcohol) / Cellulose Barrier Films
	OUTLINE
	Introduction
	Chemical Vapor Barrier
	Materials
	PVOH Water Stability
	Poly(acrylic acid)-PAA
	Crosslinking reaction
	Cellulose Nanocrystals-(CNXLs)
	Proposed structure
	Objectives
	Methods
	Preparation of the Blends
	Film Preparation
	Heat treatment optimization
	
	Fourier Transform Infrared Spectroscopy
	FTIR of 10% CNXL/10% PAA/80% PVOH
	Polarized Optical Microscopy�Dispersion of CNXLs
	Water Permeability �Water Vapor Transmission Rate
	WVTR
	Mechanical tensile testing �
	Tensile Modulus
	Ultimate Tensile Strength
	Toughness
	% Elongation 
	Thermal degradation�Thermo gravimetric Analysis
	PAA boosts initial Tdegradation�CNXL no effect
	Chemical Vapor Transmission Rate-CVTR
	CVTR Assumptions
	Chemical Vapor Transmission Rate
	Surface Modification of CNXLs
	Surface modification of CNXLs
	Methods
	Dispersion of C.CNXLs
	Water Vapor Transmission Rate
	CVTR
	Thermal degradation DTGA
	Conclusions
	Conclusions
	Acknowledgements

