CARBOXYMETHYL CELLULOSE NANOCOMPOSITES

YongJae Choi Department of Chemical Engineering and John Simonsen Department of Wood Science & Engineering Oregon State University

Outline

Introduction Materials and Methods П. Result and discussion III. Comparison of cellulose nanocrystals (NCC) 1. to microcrystalline cellulose (MCC) Thermal cross-linking 11. Conclusions IV. Acknowledgements V.

Introduction

CMC-based hydrogels and films have many applications, from fruit leathers to medical implants, supports for electrocatalysis and pervaporation membranes

 Biodegradable, biocompatible, non-toxic, renewable natural resource, low cost

 Using MCC as a filler imparts improved mechanical properties to films and gels
 What is the effect of reduced particle size?

CMC Synthesis

Carboxymethyl cellulose (CMC)

- Derived from cellulose by carboxymethylation
- Water soluble polymer
- Efficient, inexpensive reaction
- Usually sold as sodium salt

Commercial CMC

CMC First prepared in 1918 Commercially produced since 1920 Three key parameters to control properties for various applications Molecular weight Degree of substitution (DS) Distribution of the carboxymethyl group

Commercial CMC

Unique features of CMC Soluble in water Viscosity control Excellent dispersion of MCC Forms strong and transparent film Immiscible in oil and organic solvent High absorbent polymeric material

Nanocrystalline Cellulose

- Stronger than steel and stiffer than aluminum
- Produced by acid hydrolysis of natural cellulose
- Break microfibrils into elementary single crystallites

Cellulose Nanocrystal Production

Native cellulose

Amorphous region

Crystalline regions

Acid hydrolysis

_____ Individ

Individual cellulose polymer

NCC

80 nm

- Cellulose nanocrystal characterization with TEM
 - Average length = 85 nm
 - Average width = 3 nm
 - Agglomeration due to the attractive force

Thermal Dehydration for Cross-linking
 Alcohol group of poly(vinyl alcohol) (PVA) and acetic acid group of polyacrylic acid (PAA) are cross-linked under mild heat treatment

Objectives

Compare cellulose nanocrystal (NCC) to microcrystal cellulose (MCC) in carboxymethyl cellulose composite film

2. Preliminary investigation of thermal crosslinking between NCC and CMC

1.

Materials and Methods

Materials Carboxymethyl cellulose (CMC) ■ M.W = 250,000 ■ D.S = 1.2 Aldrich chemical company Cellulose nanocrystal (NCC) Derived from cotton cellulose Glycerin M.W = 92.10 Plasticizer Fisher Scientific

Methods

Cellulose nanocrystal preparation Grind cellulose in Wiley mill with 40 mesh screen Acid hydrolysis at 60°C with 65%(w/w) sulfuric acid for 50 min Centrifugation, decant acid, rinse Ultrasonic irradiation and/or Waring blender Decant Ultrafiltration

Film Formation

Dissolve CMC in water

Mix with NCC or MCC and glycerin

NCC concentration 5% to 30%
 Glycerin constant at 10%

Pour into Petri dish and air dry

Thermal Cross-linking

- Acid form of CMC is achieved by ion exchange (cationic resin)
- Mix with NCC
- Glycerin omitted
- Ultrasonic irradiation
- Form in Petri dish
- Air dry
- Heat treatment at various temperatures for 3 h under nitrogen gas

Methods

Mechanical testing (Sintech) Modulus of rupture (MOR) Modulus of elasticity (MOE) Extension at maximum yield strength

Methods

Thermal testing (TGA) Ramp 20°C/min

Water dissolution test

- Soak in water at room temperature
- Measure weight loss

Water vapor transmission rate

- Film covered jar containing water
- Measure weight loss with time
- Hot-dry room (30°C, 25% humidity)
- Mass flux (J) = <u>Mass change (g)</u>

Area (m²) * Time (hr)

CMC/NCC/Glycerin Films

90%CMC/10%Gly

80%CMC/10%NCC/10%Gly

Comparison of Microcrystalline Cellulose (MCC) to CNXL in CMC

10% MCC

10% CNXL

200X optical (crossed polars)

Cross Section of Film

90%CMC/10%Gly

80%CMC/10%NCC/10%Gly

Mechanical properties (MOR)

Mechanical properties (MOE)

Extension at failure

TGA

Dynamic Mechanical Analysis

HEAT TREATMENT

5% NCC in CMC No plasticizer

HEAT TREATMENT

Water Dissolution

Water Dissolution

Water Vapor Tranmission Rate

Water Vapor Transmission Rate

Conclusions

At low concentration NCC is well dispersed in the composites without observed agglomeration of cellulose NCC improved the mechanical properties (strength, stiffness and elongation) as a reinforcing filler compared to MCC TGA suggests close association between NCC and CMC

Conclusions

Cross-linking between CMC and NCC can be obtained by heat treatments Higher degree of cross-linking is achieved at higher temperature Cross-linking composites have improved water resistance Cross-linking appears to reduce water vapor permeability slightly

Acknowledgement

This project was supported by a grant from the USDA National Research Initiative Competitive Grants Program