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 Precursors of Change in
 Terrestrial Ecosystems

 Remote sensing offers new ways to estimate basic ecological
 parameters that signal change in terrestrial systems

 R. H. Waring, J. D. Aber, J. M. Melillo, and B. Moore III

 atellite remote sensing has
 proved useful in assessing
 changes in the extent, density,

 and composition of vegetation (Bot-
 kin et al. 1984). With recent improve-
 ment in spectral resolution (Ferns et
 al. 1984, Goetz et al. 1985), remote
 sensing from satellites may be capable
 of identifying on regional or conti-
 nental scales those ecosystems subject
 to change. At these scales, general
 ecosystem characteristics such as net
 photosynthesis and transpiration,
 patterns of carbon allocation, plant
 maintenance respiration, and turn-
 over of organic matter may serve as
 precursors of change.

 It may seem foolhardy to select
 characteristics of ecosystems that can
 be so difficult to quantify. But these
 characteristics represent integrative
 measures of important processes
 common to all terrestrial systems sup-
 porting vegetative cover. Moreover,
 sensing a change in the rates of such
 processes may provide insights even
 without full quantification of the
 processes.

 At present, no satellite-borne sen-
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 Satellite measurements

 made between the canopy
 and the ground can give

 clues to processes
 operating belowground

 sor can directly assess ecosystem pro-
 cesses operating belowground. Mea-
 surements must be made between the

 top of vegetation and the ground sur-
 face. Fortunately, the canopy is sensi-
 tive to changes in the availability of
 belowground resources (Coley et al.
 1985, Waring 1983). In addition, the
 canopy supplies much of the organic
 material that falls to the ground and
 eventually decomposes. It is also the
 major interface for exchanging car-
 bon dioxide, water, and aerosols with
 the atmosphere. For all these reasons,
 looking for subtle changes in canopy
 extent, activity, temperature, and
 chemistry should prove useful.

 How ecologists might use various
 remote sensors for evaluating ecosys-
 tem processes has been the subject of
 a number of planning documents for
 the National Aeronautics and Space
 Administration (NASA) (NASA
 1983, NASA 1984). Space-age tech-
 nology may open avenues for testing
 many ecological hypotheses on re-
 gional and larger scales. In this article
 we describe some ecosystem variables
 that are precursors of change and
 indicate the potential of remote sens-
 ing for assessing these variables.

 Changes in net photosynthesis
 and transpiration

 Logically, we should attempt to link
 absorbed radiation to canopy photo-
 synthesis (Gallo et al. 1985, Hatfield
 1984). Seasonal changes in canopy
 greenness have already been remotely
 sensed and reported for Africa (Tuck-
 er et al. 1985), North America
 (Goward et al. 1985), South America,
 and Asia Justice et al. 1985) using a
 normalized near-infrared (0.73-1.1
 Rxm) to red (0.55-0.68 Rxm) reflec-
 tance ratio of data collected by Na-
 tional Oceanic and Atmospheric Ad-
 ministration (NOAA) weather
 satellites (Yates et al. 1986).

 For many annual crops, dry matter
 production, as well as photosynthesis,
 correlates closely with the amount of
 photosynthetically active radiation
 (0.4-0.7 pxm) absorbed by a changing
 canopy throughout a growing season
 (Monteith 1977). Stresses of various
 kinds reduce the concentration of

 chlorophyll pigment, resulting in less
 absorption in the red wavelength re-
 gion (0.55-0.68 im) and a character-
 istic shift in the spectral reflectance
 curve (Goetz et al. 1983, Horler et al.
 1983, Schwaller et al. 1983). Damage
 to chloroplasts also results in in-
 creased chlorophyll fluorescence,
 which can be estimated as alterations

 in the normal solar radiation spec-
 trum above vegetation (McFarlane et
 al. 1980) or by laser-induced fluores-
 cence (Brach et al. 1977, Chappelle et
 al. 1985).

 Photosynthesis by perennial vegeta-
 tion is often temporarily restricted by
 freezing, soil drought, and low atmo-
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 Figure 1. When pine trees in Sweden were irrigated (I), fertilized (F), or received both
 treatments (I and F), they allocated increasing proportions (1.05 to 4.85) of carbon into
 shoots (clear bar) vs. fine roots (cross-hatched bar) compared to untreated trees (C).
 Data from Axelsson (1981), drawing from Waring and Schlesinger (1985).
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 Figure 2. Spectral reflectance from sycamore leaves illustrates that changes
 content can be detected in the 1.3-1.6 and 1.8-2.2 ,xm wavebands. Measur
 water content in living tissues (bottom two curves) requires high precision, unli
 water content (top two curves). After Rohde and Olson (1971).

 spheric humidity. Because these envi-
 ronmental conditions cause partial or
 total closure of stomata on leaf sur-
 faces, they restrict transpiration as
 well. As a result, neither photosynthe-
 sis nor transpiration relates directly to
 increasing absorption of radiation by
 the canopy (Beadle et al. 1985, Berry
 and Downton 1982, Jarvis and Lever-
 enz 1983). Moreover, when nutrient
 and water supplies are less than opti-
 mal, the proportion of growth that
 goes into roots may increase (Figure
 1). For these reasons, the measured
 aboveground production of perennial
 plants is sometimes poorly related to
 the radiation intercepted by the
 canopy.

 Assuming sensors were available
 that monitored canopy radiation ab-
 sorption over the full photosynthetic
 spectrum, we might still overestimate
 photosynthetic activity if satellite in-
 formation were analyzed only on
 clear, cloudless days. If a significant
 proportion of days are cloudy, photo-
 synthetic activity should be reduced
 accordingly. Freezing temperatures,
 either at night or during the day, also
 pose a major constraint. Temperature
 can be estimated by monitoring emis-
 sion in the long-wave, thermal infra-
 red portion of the spectrum (8.2-12.2
 ,m) (Idso 1982, Smith et al. 1981).
 Temperature information may also
 aid in estimating stomata control on
 transpiration, particularly for short
 vegetation (Jackson 1982).

 Extremely dry air can likewise limit
 leaves' ability to photosynthesize or
 transpire on bright, clear days. Al-
 though humidity cannot yet be mea-
 sured directly, humidity deficit can be
 approximated throughout the day
 from minimum night (assumed dew-
 point temperature) and maximum
 day temperatures (Riha and Camp-
 bell 1985). Sustained drought may
 limit water uptake by plants and
 eventually halt photosynthesis if leaf
 water content (actually turgor) drops
 below a certain threshold. Decreases
 in leaf water content result in greater

 l reflectance, particularly in the water-
 2.5 absorbing spectra between 1.3-1.6

 ,im and 1.8-2.2 xJm (Figure 2).
 Maintenance respiration also in-

 creases as perennial vegetation grows
 in water taller and the number of living cells in
 ement of nonphotosynthetic tissues increases
 ike lethal with elongation of conducting tissues

 serving roots and leaves. These non-
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 photosynthetic cells require carbon re-
 sources for maintenance that might
 otherwise go toward growth (Figure 3).

 How well photosynthesis and tran-
 spiration can be estimated from sea-
 sonal analyses of absorbed radiation
 and supplemental data representing
 constraints associated with cloudiness,
 temperature, drought, and humidity
 stress is not known. Estimating net
 photosynthesis appears feasible be-
 cause the simple product of canopy leaf
 area and growing season length already
 correlates well with estimates of total

 carbon uptake by a wide variety of
 broadleaf forests (Figure 4). The related
 approach for estimating transpiration
 from satellite spectral data is discussed
 by Sellers (1985).

 Patterns of carbon allocation

 As the availability of essential re-
 sources changes, so does the alloca-
 tion pattern by which photosynthate
 is distributed within a plant to shoots,
 roots, reproductive organs, storage
 compounds, and defensive structures
 (Mooney and Chu 1974; see also
 Figure 1). In growing plants, the rela-
 tive availability of carbohydrates and
 nitrogenous compounds in expanding
 tissue often mirrors the partitioning
 of carbon resources between roots

 and shoots (Lainson and Thornley
 1982). Increasing nitrogen availabil-
 ity raises the protein content of fo-
 liage, whereas a reduction in nitrogen
 increases secondary wall thickening
 and lignification. In willow clones,
 for example, increases in foliar lignin
 to protein ratios induced under con-
 trolled conditions resulted in a pro-
 portional change in root/shoot pro-
 duction (Waring et al. 1985). Storage
 carbohydrates, such as starch, and
 defensive compounds, such as tannins
 and phenolics, also varied predictably
 as the availability of light and nutri-
 ents affected the carbon and nitrogen
 supply of expanding foliage. In a vari-
 ety of vegetation types, the relative
 availability of nutrients and carbohy-
 drates in the canopy also affects the
 nutritional quality of leaves for many
 animals and thus the potential for
 defoliation by herbivores (Coley et al.
 1985, Gartlan et al. 1980).

 Whether important biochemical
 features of canopies can be evaluated
 routinely from satellites is still un-
 known. Many biochemical com-
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 Figure 3. Stem growth of pine forests in Norway reaches a maximum on good (I) or
 poor (IV) sites after about 40 years, corresponding with maximum canopy development
 and net photosynthesis, denoted by the highest point for each site class. Thereafter,
 stem growth decreases in proportion to the increase in volume of living cells in the stem.
 Data from forestry yield tables of Brantseg (1969), analysis by Waring and Schlesinger
 (1985).

 150

 pounds have unique spectral absorp-
 tion properties in the near-infrared
 range from 1.0 to 2.6 p,m (Figure 5).
 With sensors able to discriminate at
 0.003-Lm resolution (Ferns et al.
 1984), predictions based on labora-
 tory spectral analyses of starch, pro-
 tein, and lignin approach the preci-
 sion of wet chemistry (Peterson et al.
 1985, Spanner et al. 1985). Airborne
 measurements made five kilometers
 above hardwood forests indicate

 good correlations with leaf nitrogen
 content at specific wavelengths (Span-
 ner et al. 1985; Figure 6).

 Even in a vegetation type that
 maintains a relatively constant cano-
 py from year to year, environmental
 conditions may vary sufficiently to
 affect growth in stem biomass. Aver-
 age production or standing biomass
 may be correlated with the normal-
 ized near-infrared to red reflectance
 ratio generated from a variety of veg-
 etation (Goward et al. 1985, Tucker
 1980). A more general approach may
 be to use microwave (Hoekman
 1985) or laser systems (Maclean and
 Krabill 1986, Nelson et al. 1984,
 Schreier et al. 1985) to assess changes
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 Figure 4. Net carbon uptake in a wide
 range of broadleaf forests increases as the
 product of leaf area index and number of
 months in the growing season increases.
 This index is termed leaf area duration

 (LAD). The numbered points refer to (1)
 Fagus forest in Japan, (2) Castanopsis
 forest in Japan, (3) broadleaf forests in
 Japan, (4) tropical humid forests of the
 Ivory Coast in Africa, and (5) tropical
 forests of southern Thailand (Kira and
 Shidei 1967). Point (6) is a Liriodendron
 forest in the southeastern United States
 (Harris et al. 1975), and (7) is a mixed
 hardwood forest from the northeastern
 United States (Whittaker et al. 1974).
 Drawing modified from Waring and
 Schlesinger (1985).
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 Figure 5. The absorptance spectra for pure samples of protein, starch, and oils in leaf
 tissue differ significantly from one another. Lignin, not shown, differs from starch and
 protein by absorbing more at 1.143, 1.417, and 1.446 ,im. After Rotolo (1979).

 decreases should be a function of

 temperature. Scot pines growing on
 poor (class IV) sites in Norway are
 situated at higher elevations or lati-
 tudes than pines growing on good
 (class I) sites. Accordingly, produc-
 tion decreases more rapidly on the
 warmer (class I) than on cooler (class
 IV) sites.

 Maintenance respiration can be ex-
 pected to increase in proportion to
 the enzymatic (protein nitrogen) con-
 tent of tissue. A doubling in protein N
 can double the maintenance cost

 (Amthor 1984, Penning de Vries
 1975, Waring et al. 1985).

 If remote sensing indicated signifi-
 cant increases in either canopy tem-
 perature or nitrogen content, we
 should expect decreases in above-
 ground production, assuming no
 measurable increase in photosynthe-
 sis or reduction in the proportion of
 resources allocated belowground to
 roots.

 <,v^~~~~~~~~~~, ~Organic matter turnover
 H 1.00 Leaf litterfall can be estimated by
 w 6 LEAFNITROGEN comparing annual extremes in cano-
 : 0.67- LEAF NIpy greenness or leaf area index. The
 UL \ near-infrared to red reflectance ratio
 w 0.33 - of vegetation may fulfill this require-
 o h ment (Running et al. 1986, Tucker
 - IV 1980).

 O A I tThe ratio of lignin to nitrogen in
 F 0.33 - litter is a sensitive indicator of how

 < ' q:V ' ,/ V '1decomposition rates might be expect-
 'j -0.67 - \ /ed to vary in a given climate (Figure
 rr 7). Other elements such as phospho-
 r -1.00 ' ' ' ' ' ' ' rus, known to be limiting in the trop-
 ?j 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ics, might also be measured remotely

 WA\VELENGTH ( )in green leaves in the canopy (Peter-
 son et al. 1985). Even if we could not

 Figure 6. Spectral correlogram for nitrogen concentration in leaves (mg/cm2) of a predict retranslocation of nitrogenous
 hardwood forest in Wisconsin, derived from measurements taken 5 km above the and other materials from leaves be-
 canopy with an airborne imaging spectrometer. After Spanner et al. (1985). fore they fall, a significant change in

 lignin to nitrogen content of fresh
 foliage would suggest a correspond-

 in stem biomass at 1-5-year intervals. because growth in stem mass has gen- ing change in decomposition of the
 If annual changes in aboveground erally low priority in trees (Waring material when it becomes detritus. A

 production could be estimated inde- 1983) as well as in annual vegetation major change in decomposition rates
 pendently from canopy properties, we (Donald and Hamblin 1976). could dramatically affect the release
 would have an alternative to ground of various nitrogenous and sulfur
 measurements for gauging the reli- Plant maintenance respiration compounds to the atmosphere and
 ability of canopy biochemistry and surface waters (Delwiche et al. 1978,
 estimates of photosynthetic activity in Increases in the living portion of stem Vitousek 1983).
 predicting the resources available for
 stem and branch growth. The ratio of
 net stem or aboveground growth to
 canopy photosynthesis may by itself
 prove a sensitive indicator of stress

 biomass, when not associated with
 corresponding increases in photosyn-
 thetic activity, can account for major
 reductions in annual production (Fig-
 ure 3). The rate at which production

 Conclusions

 Plant canopies can give clues to eco-
 system properties that might be pre-
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