Biologist’s Toolbox

Imaging radar for ccosystem studies

atellites vastly extend the sur-

veillance of Farth’s surfacc.

Ofren, however, the view from
space is obscured by clouds, which
prevent remote sensing with optical
or therma! sensors. Because of cloud
cover and orther inherent limitations
of oprical and rthermal sensors, many
IMPOrant ecosystem properrics re-
lated rto strucrural features of rhe
veperation and surface moisrure con-
dirtons cannotr be adequately as-
sessed. As an alternative, microwave
sensors (imaging radar} bave longer
wavclengths (from [ em to 150 ¢m)
that penerrate the densest cloud
cover and are particularly sensitive
ro the presence of water.

To date the principal applications
of imaging radar have been the
mapping of geologic features and
the following of seasonal changes in
sea-ice. Recently a number of satel-
lites have been launched with radar
sensors, thus expanding opportuni-
ties tor global assessments {(Way and
Smith 1991): two European Earth
Remore Sensing Satellites, FRS-1
and ERS-2 (Atterma 1991); a Japa-
nese Earth Resources Satellite,
JERS-1 {(Nemoto et al. 1991); and,
planned in late 1995, a Canadian
satellite, RADARSAT (Parashar et al.
1993).

In this article we focus on the
applications of imaging radar, which
is a rype of sensor thar actively gen-
crates pulses of microwaves and, in
the mterval between sending pulses,
records the returning signals re-
flected back to an antenna. The ge-
ometry of an object and its compo-
sitton strongly influence the strength
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Table 1. Band designaticns and corre-
sponding wavelength intervals and fre-
quency ranges for radar sensors,

Band Wavelength range Frequency range
g 2 q } g

{em) (GHz)
K 2.75-0.83 10.9-36.0
x 3.21-2.73 5.75-10.9
C 7.019-5.21 4,2-5.7%
I, 76,9194 0,39-1.55
P 133.3-76.9 0.225-0.39

of the reflecred microwave pulses.
An important asset of radar is irs
ability ro sense the amount of warer
present in or on various surfaces
and wherher the water is in a frozen
or liquid state.

The resolurionat which objecrs may
be discerned with radar is propor-
rional ro the ratio between wavelength
and antenna length. The image spatial
resolution for a real aperture radar js
the angular resolution multiplied by
the antenna’s distance from the sur-
face. This relationship creates a prob-
lem because an instrument such as the
SeaSar radar ar 800-kilometers alo-
tude and 24-centimeters wavelength
would provide a resolution of 20 km
with its 10-meter antenna (Curlander
and McDonough 1991). To improve
resolution, a synthetic aperture radar
{SAR]} technigue 1s used in which the
phase and magnitude of the returned
echo is recorded for the entire time a
feature on the earth’s surface is in
view of the radar. A high-resolution
image is then produced in the image
processing by synthesizing an ex-
tremely long antenna.

The spatial resolution of images
produced by airborne SAR svstems
15 typically in the 1-10-meter range,
compared with 10-30 m for satellire
SaRs. The imagery is acquired at
various angles and fields of vicew,
offering a trade-off between sparial
resolution and area coverage {Fig-
urc 1} The smaller the SAR viewing,
angle, the stronger the influence of

topography (Bayeretal. 1991, Hinse
cral. 1988, van Zyl 1993). Becausc
SAR sarellites repear coverage as of-
ten as every three days, a consider-
able amount of {ine temporal reso-
lution data may be acquired to
monitor ecosystem condirions,
which vary on daily 10 weekly rime
scales.

Synthetic aperture
radar imagery

Most Imaging radar sensors operate
in a specific band within the micro-
wave wavelength range berween
approximately 1 em and 150 ¢m
(Table 1). A digital SAR image con-
sists of a two-dimensional array of
picture elements (pixels) with the
intensity (called the brightness) of
each pixel proportional to the power
of the microwave pulse reflecred
back from the corresponding ground
cell. The reflected radar signal is
proportional to the backscattering
coetficient (6%) of a given ground
cell, which is related to many system
properties as well as the distance

SAR on-line

Satellite SAR images may be
viewed on the following Inter-
net home pages:

NASA/JPL Imaging Radar at
htep:/fsouthport.jpl.nasa.gov/

Alaska SAR Facility at hrep:
fleosims.asf.alaska.edu:12355/

National Space Development
Agency Earth Observing Center
at hetpi//bdsn.eoc.nasda.go.jp/
guide/guide/sarellite/sendata/
sar_e html

RADARSAT at htep://adro.
radarl.sp-agency.cal
adrohomepage.hrml

ERS-2 at hrrp:/iservices,
esrin.esa.it/specers2.hrm
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Figure 1. Canadian RADARSAT with synthetic aperture radar acquires backscatter data at various swath widths and
incidence angles, which determine the spatial resolution of derived images. After Parashar et al. (1993).

between the radar antenna and the
ground cell. Following calibration,
the pattern displayed by differences
in the brightness among pixels pro-
vides a backscatter image. ©° is a
dimensionless quantity characteris-
tic of the scattering behavior of all
the elements contained in a given
ground cell. Because ©° can vary
over several orders of magnitude, it
is expressed as a logarithm with
units of decibels (dB).

Backscatter coefficients differ
depending on the wavelength or fre-
quency, viewing angle, polarization,
and characteristics of the surface
features and surface topography
(Cimino et al. 1986, van Zyl 1993).
The atmosphere is essentially trans-
parent to microwaves, even under
most cloudy and rainy conditions,
but the choice of wavelength is im-
portant for assessing structural fea-
tures of vegetation. Shorter wave-
lengths (e.g., X- and C-band) carry
information related to foliage and
small branches. Intermediate L-band
wavelengths are sensitive to stems
and large branches, whereas the
longest wavelengths (P-band) afford
the greatest penetration through
vegetation and mainly reflect off
large stems and the soil surface.

The most advanced radar systems
transmit and receive pulses as dif-
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Figure 2. Primary interactions of X-, C-, L-, and P-band microwave with forest
canopies. Optical reflectance from the top of the canopy is also shown. After Jet

Propulsion Laboratory (1986).

ferent polarizations, which increases
the information content in back-
scatter images. Polarization results
because there is an electric field as-
sociated with a microwave signal
that is perpendicular to the direc-
tion of its propagation. If the elec-
tric field is transmitted or received
parallel to the ground surface, the
signal is referred to as horizontally
polarized. When the polarized sig-
nal is transmitted or received so that
the electric field is at a right angle to
the surface, the electrical field is

vertically polarized. A signal that
reflects off a tree trunk to the ground
surface before returning to the ra-
dar antenna is likely to show dis-
tinctive polarization shifts from sig-
nals that return directly off the soil.
Surface objects that scatter micro-
waves, if vertically oriented (e.g.,
wheat stalks), show high backscat-
ter in vertically polarized imagery
and low backscatter in horizontally
polarized imagery.

Microwave signals are influenced
not only by the shape, density, and
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Figure 3. Three radar bands C, L, and P
that were generated and received in elec-
trical polarized fields oriented at (a) hori-
zontal (HH), (b) cross (HV), and (c) 'ver-
tical (VV) directions to the ground indicate
that biomass in coniferous forests of the
Pacific Northwest could not be assessed
accurately above values of 150 Mg/ha.
After Moghaddam et al. (1994).

orientation of objects in the scene
but also by the dielectric character-
istics of surface features. Dielectric
properties are a measure of the rota-
tion of polar molecules such as wa-
ter. Thus, the more liquid water
contained in a surface material, the
greater the microwave reflection. If
the surface substance is frozen, it no
longer scatters microwaves because
the water molecules no longer ro-
tate and the dielectric constant is
reduced accordingly.

November 1995

GRASS ASPEN PINES
0.30 0.30 0.30
§ 0.25 1025 0.25
0.20 0.20 0.20
P band §
5 015 0.15 0.15
)
g o0 0.10 0.10
3
g o005t 0.05 Hnmm] 0.05}
0.00 0.00 0.00
3 210 1t 23 32401 23 3210123
ac? (dB) a0’ (dB) ac® (dB)
030 0.30 030
g 0.25 0.25 0.25
3 020 0.20 0.20
L band 8
% 015 0.15 0.15
Ea)
g 010} 0.10 0.10
3
g 005
0.00
3 -2 -1 0 1 2 3
ac® (dB)
0.30 0.30
% 0.25 025}
3 020 0.20
Cband 8
5 015 0.15
g o0 0.10
§ O .
g 005}
0.

40 (dB)

Figure 4. Aircraft-borne radar with C-, L-; and P-bands and HH polarization
showed shifts (Ac®) in the frequency distribution of backscatter coefficients from
wet (8 July 1990) to dry conditions (10 July 1990) for three distinct types of
vegetation. Shifts in backscatter coefficients were largest for C-band and least for

P-band. After Ulaby and Dobson (1993).

Structural features
of vegetation

Ecologists are interested in recog-
nizing structural properties that
characterize different vegetation
types, in mapping the presence of
gaps in canopies, and in assessing
the area coverage of leaves or total
aboveground biomass. SAR contrib-
utes extensively to these objectives.

Estimating standing biomass. Opti-
cal sensors are unable to distinguish
differences in standing biomass
where vegetation is dense (Christen-
sen and Goudriann 1993, Cohen
and Spies 1992, Wu and Strahler
1994). Because longer microwave
wavelengths penetrate through the

leafy canopy (Figure 2), radar holds
more promise for assessing standing
woody biomass than do optical sen-
sors. Studies using single wavelength
data show that present detection
limits are between 100 to 150 Mg/
ha (Figure 3; Beaudoin et al. 1993,
Dobson et al. 1992b, Moghaddam
et al. 1994, Sader 1987). By using a
combination of radar bands and po-
larizations, detection limits may be
increased to 250 Mg/ha as demon-
strated for a mixture of northern
hardwoods and conifers (Ranson
and Sun 1994a) and perhaps even
higher when trees are frozen or leaf-
less (Ahern et al. 1991). Multiband
radars are not yet available on any
satellite. Additional knowledge con-
cerning the type and structure of the
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Figure 5. Satellite-borne radar (ERS-1) with C-band and VV polarization distin-
guished major cover types in Michigan on a single day when leaf surfaces were dry
based on backscatter distributions collected from nine scene elements, each 37 x
37 m. After Dobson et al. (1992a). © 1992 The Institute of Electrical and

Electronics Engineers.

local vegetation is required to make
predictions of biomass above 150
Mg/ha with the most sophisticated
models, which separately account
for crown and stem biomass (Dob-
son et al. in press).

The application of SAR for esti-
mating standing biomass varies by
region. In the boreal forests where
growth is slow and the vegetation is
often sparse, single L- or P-band
radar can distinguish a nearly full
range of biomass represented in dif-
ferent successional stages of vegeta-
tion (Kasischke et al. 1994). On the
other hand, in wet tropical forests
where regrowth after ten years may
reach 400 Mg/ha, biomass detec-
tion limits are quickly exceeded as
forests reclaim abandoned land
(Nepstad et al. 1991). In the giant
coniferous forests of the Pacific
Northwest, where old-growth for-
ests average 800-1000 Mg/ha and
redwoods can reach 2500 Mg/ha
(Waring and Franklin 1979), most of
the heavily forested areas exceed de-
tection limits, as indicated in Figure 3.

Leaf area index. Leaf area index and
foliar biomass are related variables
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important in estimating solar en-
ergy interception, photosynthesis,
evapotranspiration, and mineral
cycling in ecosystems (Pierce et al.
1994). Optical sensors on present
satellites can follow changes in leaf
area index seasonally under cloud-
free conditions but are sensitive to
atmospheric variations and low sun
angles. In regions where the domi-
nant vegetation is coniferous forest,
optical sensors can estimate leaf area
indices (one-sided or projected) up
to values of 6 (Spanner et al. 1994).
Where mixed vegetation is present,
neither leaf area index nor foliage
biomass is easily assessed because of
variation in leaf orientation and
canopy architecture. However, the
fraction of photosynthetically ac-
tive radiation intercepted by cano-
pies, which is an exponential func-
tion of leaf area index, is a linear
function of the most common opti-
cal reflectance index of green veg-
etation (Asrar et al. 1992, Goward
and Huemmrich 1992, Goward et
al. 1994, Law and Waring 1994).
SAR sensors have obvious advan-
tages in being able to distinguish
seasonal changes in canopy leaf area,

even when persistent cloud cover
precludes observations with optical
sensors. Variations caused by con-
densation of fog or dew on leaf
surfaces, however, may limit accu-
racy of leaf area index and foliage
biomass estimates with radar (Sader
1987). Differences in leaf display
also affect radar signals. Recent stud-
ies show that C-band radar from the
ERS-1 satellite was unable to quan-
tify leaf area coverage of deciduous
species, because the horizontal ori-
entation of leaves severely limits C-
band penetration. On the other
hand, the more dispersed foliage of
needle-leaf coniferous allowed as-
sessment of leaf area index up to
values of 4 (Franklin et al. 1994,
Ulaby and Dobson 1993).

Distinguishing vegetation types.
Broadly differing life-forms, such as
grass meadows, deciduous forests,
and coniferous forests, exhibit dis-
tinct backscattering properties for
selected radar bands. By comparing
differences in backscattering coeffi-
cients (60%) when foliage is wet to
when it is dry, the resulting fre-
quency distribution of the various
radar bands can separate major types
of vegetation (Figure 4). The shorter
C-band wavelength is particularly
sensitive to wet canopies, whereas
the longer wavelengths (L.- and P-
bands) are not. Under dry condi-
tions, C-band radar can distinguish
major land-cover categories when
the frequency distribution of a 3 x 3
pixel array representing a given type
are compared (Figure 5). The smooth
surface of lakes produced the lowest
backscatter (approximately -26 dB),
with concrete surfaces slightly higher
(-23 dB). Prairie and hayfields aver-
aged approximately -16 dB, whereas
forests separated into two broad
groups: upland conifers (between
-11 dB and -13 dB) and others {more
than -10 dB). Coverage with multi-
band radar and combinations of po-
larization offer the greatest poten-
tial for mapping forests types that
include deciduous hardwoods and
various coniferous species (Rignot
et al. 1994b).

A classification accuracy of up to
66% was reported by Ranson and
Sun (1994b) in a mapping scheme
that included classes of forests of
pure hardwoods and conifers, for-
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Figure 6. By com-
bining C-band ra-
dar with optical
dara obtained from
a LANDSAT image
of the western
Amazon Basin in
Brazil, ropographic
features provided
from radar are
complemented by
vegeration changes
assessed oprically.
Along the flood-
plain of the large
river where aban-
doned meanders
arc visible, a young
closed canopy of
rain  forest s
present. An older,
closcd rain forest
occupics the npper
right corner of the
image, whercas a
more open forest

with a bamboo understory dominates the upper left portion. Human diseurbance
associated with farming and pasturing is indicated in the lower left corner of the

scene. After Ahern cr al, (1993D).

ests of mixed composition, voung
regenerating forests, bogs, and open
water obscrved in a single summer
scene, Drieman (1994) demonstrated
that C-band SAR provided rveason-
able accuracy in discriminating ma-
jor forest types and recenrly cleared
forests in eastern Canada and sug-
gested thar forest type inventories in
that region may be complered with
imaging radar data alone. Additional
improvements n accuracy can be
obtained using multitemporal and
scasonal SAR imagery (Ahern er al.
1993a, Ranson and Sun 1994Db).
Where topography is highly vari-
able, radar imagery can still be valu-
able for classification if combined
with digital elevation data (Peddic
and Franklin 1991} or with infor-
marion derived with optical remote
sensing (Figure 6; Evans and Milton
1991, Paris and Kwong 1988).

Distinguishing canopy gaps. Re-
cently developed spartially explicit
successional models (Urban et al.
1991, Weishampel er al. 1992} re-
quire information concerning the
size and shape of canopy gaps, as
well as the frequency at which they
arc formed. Areas devoid of tree
cover characteristically exhibit low
radar backscatter associated with
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relatively smooth surfaces, or in the
case of optical sensors, lower values
of canopy greenness. Sometimces,
however, backscattering may be cn-
hanced if tree cover is sparse but
uriformly distributed, because ra-
dar beams bounce back and forth
between the ground and isolated tree
trunks (Ranson and Sun 1993,
Richards ¢t al. 1987a).

As gap size decreascs, the ability
of radar to discern differences be-
comes more problematic, depend-
ing a great deal on the uniformity of
the ground surface and uniformity
in spacing of trees (Wesrman and
Paris 1987). In some cases, the pres-
ence of gaps smaller than the pixel
resolution can be mapped; the limits
on this procedure are still under
study with detailed backscarrer mod-
els (Sun and Ranson 1993), In cases
where radar analyses can be coupled
with well-designed ground surveys,
classifications of various fearures
can be improved with texture analy-
ses of radar images (Sheen and John-
ston [992, Ustn cr al, 1991, Weis-
hampe! et al. 1994),

Assessing water limitations

Strucrural informarion is cssential
for initializing, calibrating, and vali-

%

Watar

Fomrets Srrua By Fon
Figure 7. Ground-measured meth-
ane exchange rares (mean values and
standard doviations shown above wveg-
eration in mp CH, x m?x hr'} correlate
with backscatrer cocfficients obrained
with airhorne C- and L-band micro-
waves sent and received, respectively,
in vertically (VV; @) and horizontally
(HH; <) polarized electrical fields across
a range of raiga vegeration. The dara
indicate that the major source of merh-
ane emissions is fen vegetation, which is
dominated by sedge plants. After L.
Motrisscy, nnpublished dara.
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Figure 8. C-band radar backscarcer mea-
surcd from the European Farcth Remote
Sensing Sarellite (ERS-1) correlate well
with position of the warer table above
the surface of sedge-dominared fen veg-
etation and methane exchange rares in
th tundra. Mean values with standard
error are shown. After Morrissey er al.

{1994).

dating ecosystem and succession
models. Estimaring the rates at which
minerals, water, and energy are
cycled through ecosystems and for-
cst communities require some addi-
rional information about the envi-
ronment. Because water is essential
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Figure 9. Airborne L-band radar shows the cffect of clanges o the diclectric constant
of water in liguid and frozen states of images acquired five days apart (13 and 19 March
1988) over the Bonanza Creck Experimental Forest, an established Long-Term
Ecological Research site, near Fairbanks, Alaska, After Way er al. (1994,

for all of life’s processes, and be-
cause radar 1s sensitive to changes
in the amount and state of warer
through the dielccrric consrane, it
is logical to investigate whether ra-
dar remote sensing can assess varia-
rions in the state of water on sur-
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faces and within plants, litter, and
so1].

Assessing flooded conditions. In
many areas, flooding occurs peri-
odically, and at these times cloud
cover usually obscures all observa-

tions with optical or thermal sen-
sors. The smoath surface of srand-
ing warer reflects afl incident micro-
wave radiation away from rhe
sensor, resulting v a much lower
backscarrer than a dry surface. Un-
der vegeration, a unigue corner-re-
flection backscarter interaction be-
tween surface water and tree stems
resnlts in an extremely high back-
scatter and ailows inundation to he
clearly mapped (Hess et al. 1990,
Richards ct al. 1987h).

The presence of shallow water is
indicative of anaerobic condirions,
which under cerrain conditions fa-
vor the production of methane and
other trace gascs. The rransport of
gascs to the surface is greatly en-
hanced through hollow-stemmed
plants (e.g., reeds, scdges, and rice),
making wetlands a major source of
trace gases. Because of the verrical
orientation of these kinds of plants
and the underlying surface warter,
radar backscarrer properties can
identify the most acrive sites for
trace gas emission and predict sea-
sonal variation in gas exchange as-
sociated with the position of the
water table (Figures 7 and 8;
Morissey et al. 1994).

Assessing frozen conditions. lce for-
mation in soil and within the stems
of vascular plants clearly limits most
hydraulic and physiologic processes.
In many regions, freezing conditions
set limits on the growing scason of
crops as well as other vegeration.
Dense canopies of vegeration shicld
against radiation frost but may also
extend the period that snow remains
present. Differences in the radiative
reflecuve properties of stems and
branches and in the osmortic proper-
ries of cells can alter the exrent of
freezing as well. Consequently, it is
desirable to have an independent mea-
surc of freezing conditions beyond
that provided from weather records.

Radar, because of its sensitivity
to changes in the dielectric constant
of water, has shown potential for
mapping freeze-thaw conditions over
wide areas (Rignot and Way 1994,
Rignot et al. 1994a, Way cral, 1991,
1994), When water is frozen within
wood, the diclectric consrant
changes from approximatcly 30 ro
l[css than 5 (Way er al, 1991). The
resulting change in backscatrer is

BioScience Vol 45 No. 10



significant (Figure 9). Data collected
over boreal forests in Alaska from an
aircraft with L-band radar showed a
significant drop in backscatter when
freezing occurred in boreal vegetation
(Way et al. 1994). The ERS-1 satellite
equipped with a C-band radar also
has shown the ability to distinguish
frozen from thawed conditions on a
local and regional basis (Rignot and
Way 1994, Rignot et al. 1994a).

Assessing moisture stress in vegeta-
tion. During daylight hours, tran-
spiration by woody plants may ex-
ceed water uptake by a third, even in
maritime climates (Waring et al.
1980). The water deficit is met pri-
marily through temporary extrac-
tion from water-filled conducting
elements in the sapwood of branches
and stems. The extraction of water
from the conducting elements in-
creases the hydraulic resistance and
thereby causes reductions in photo-
synthesis and transpiration {Waring
and Silvester 1994). In dense conif-
erous forests, the sapwood in stems
and branches holds up to a ten-day
reserve of water (Waring and Run-
ning 1978).

In experiments where water has
been sprayed on conifer and hard-
wood trees during the peak of daily
transpiration, rapid changes in wa-
ter potential, dielectric constants,
and water flux through the sapwood
have been measured (Figure 10).
Lags in the response of water poten-
tial to changes in water flux are
indicative of likely changes in water
storage in the sapwood (McDonald
et al. 1992). Dielectric changes of
more than 30 units have been mea-
sured in the most active outer sap-
wood near the base of the tree, sug-
gesting changes in the fraction of
free-water in conducting elements
(McDonald et al. 1990, Way et al.
1991). When radar measurements
have been made in conjunction with
such studies, the backscattering co-
efficients change 1-3 dB (McDonald
et al. 1990, Ulaby and Dobson
1993). Repeated measurements of
backscatter over a season may be
required to provide evidence of per-
sistent drought associated with re-
ductions in stem water content.

Assessing soil moisture. The mois-
ture content of soils greatly affects
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Figure 10. Important changes in the
water relations of a Deodara cypress
tree occurred when the crown was
sprayed with water for slightly more
than four minutes, noted as the period
between two vertical parallel lines. Al-
most immediately, the flux of water
through the stem dropped (a), followed
by an increase in the dielectric constant
(e,) of wood (b), and a recovery in twig
water potential (c). The large variation
in dielectric constant is indicative of
changing water content. After McDon-
ald et al. (1992). © 1992 The Institute
of Electrical and Electronics Engineers.

water uptake by plant roots and the
rates of microbial activities. It is
therefore an important variable in
all ecosystem models. Radar is lim-
ited in its ability to measure soil
water content to the upper soil lay-
ers. L-band radar only penetrates
into bare, damp, smooth soil to a
maximal depth of 10 cm. Shorter
wavelengths penetrate to only 1-3
cm. In agricultural fields that have
smooth soil surfaces and biomass of
less than 1 Mg/ha, moisture content
of surface layers can be fairly accu-
rately determined {Dobson et al.
1992b, Engman 1991, Jackson and
Schmugge 1991, Ulaby and Dobson
1993, Wang et al. 1994). Once veg-
etation exceeds the biomass limit,
however, the ability of radar to sense
surface soil water conditions rap-
idly decreases. The presence of dead
vegetation also contributes to at-

tenuating the backscattering signal
(Engman 1991). Under a forest
canopy, the amount of moisture held
in the leaves is so large that it inter-
feres with any direct assessment of
soil water status {Jackson and
Schmugge 1991). In more open sa-
vanna, the predominant source of
water during drought periods is well
below the surface 10 ¢cm and thus
not discernible by radar.

Alternatively, moisture condi-
tions under forests can be inferred
using a combination of optical and
thermal bands when the analysis is
made across of a range of canopy
densities during extended drought
periods (Goward etal. 1994, Nemani
and Running 1989, Nemani et al.
1993). Comparable area-wide analy-
ses have not been made with radar
except to document flooding or
freezing conditions.

Conclusions

Imaging radar provides a sensitive
means of remotely sensing the ex-
tent and duration of flooding under
a range of types of cover vegetation.
Likewise, when water freezes in veg-
etation and soil, changes in back-
scatter can readily be detected with
radar. Persistent drought that re-
sults in reducing water content of
leaves and stems of vegetation may
also be detected with repeated radar
coverage. Radar is limited in its abil-
ity to quantify soil moisture at depths
below 10 ¢cm or when vegetation
exceeds 1 Mg dry matter/ha.
Current space-borne imaging ra-
dars can assess structural features,
such as leaf area index in conifer
forests up to a leaf area index of 4,
which is slightly below the sensitiv-
ity obtained with optical sensors.
Many ecosystem models calculate
water vapor and carbon dioxide
exchange from vegetation based on
the interception of radiation. Both
optical and radar sensors provide
better and more general estimates of
the fraction of radiation intercepted
than they do of leaf area index.
With a single radar band, biomass
detection limits are generally less
than 150 Mg/ha. With additional
bands, detection limits may be in-
creased slightly but are still well
below that desired for global sur-
veys of tropical and temperate for-
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ests where standing biomass values
usually exceed 400 Mg/ha. The
ground resolution of airborne SAR
is 1-10 m; the resolution from
present imaging radar satellites is
10-30 m. Some gaps within forest
canopies can be recognized at sizes
well below the pixel resolution in
backscatter images. Radar, when
combined with optical and thermal
remote sensing, provides indepen-
dent estimates of many important
ecological variables and complemen-
tary data, which can increase the
reliability and value of remote sens-
ing to many ecosystem studies.
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