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Abstract: Accurate estimates of tree diameter, height, volume, and biomass are important for nu-
merous economic and ecological applications. In this study, we report exponential equations to
predict tree DBH (cm), stem volume over bark (VOB, m3), and total above-stump biomass (TASB,
kg) using three varying levels of input data for Pinus radiata D. Don, Eucalyptus globulus Labill., and
Eucalyptus nitens (H.Deane & Maiden) Maiden planted trees. The three sets of input data included:
(1) tree height (HT, m), (2) tree HT and ground projected living crown area (CA, m2), and (3) tree HT,
CA, and additional stand parameters. The analysis was performed using a large dataset covering the
range of distribution of the species in central Chile and included stands of varying ages and planting
densities. The first set of equations using only HT were satisfactory with Adj-R2 values ranging from
0.78 to 0.98 across all species and variables. For all three species, estimation of DBH, VOB, and TASB
as a function of HT improved when CA was added as an additional independent variable, increasing
Adj-R2 and reducing RMSE. The inclusion of stand variables, such as age and stand density, also
resulted in further improvement in model performance. The models reported in this study are a
robust alternative for DBH, VOB, and TASB estimations on planted stands across a wide range of
ages and densities, when height and CA are known, especially when input data are derived from
remote sensing techniques.

Keywords: radiata pine; blue gum; shinning gum; diameter-height allometry; crown diameter; stem
volume; above-ground biomass; growth and yield modeling; remote sensing

1. Introduction

Accurate estimates of tree diameter, height, volume, and biomass are important for
numerous economic and ecological applications, such as describing stand structure, de-
termining the merchantability of stands, and calculating the carbon stock of forests [1,2].
Historically, these metrics have been determined through a combination of direct field
sampling and allometric equations. Forest inventories typically involve field-based mea-
surements of tree height and diameter and allometric equations to predict tree biomass
from these measurements [3,4]. Conducting inventories of a large number of individual
trees, however, can be an expensive and a time-consuming process [5]. Tree height can
often be especially difficult to measure at a large scale and, due to this, foresters often use
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allometric equations to predict tree height from tree diameter at breast height (DBH) [4].
Recently, there has been a growing interest in the use of remote sensing as an alternative to
field-based forest inventories due to the lower labor requirements of the former. Remote
sensing also offers the advantage of providing estimates of forest characteristics at larger
spatial and temporal scales [6].

Light detection and ranging (LiDAR) and aerial photogrammetry (AP) are remote
sensing techniques well suited to characterizing numerous tree characteristics, such as
height, crown area, crown height, leaf area, and aboveground biomass [7–12]. These
techniques can provide accurate estimates of individual tree height; however, tree DBH
is not directly imaged by LiDAR or AP. Therefore, in order for LiDAR or AP to estimate
aboveground biomass, equations to derive tree DBH from other tree and stand variables
must be used, as individual tree biomass equations typically require DBH [11]. Research
has shown that tree DBH is well correlated with crown radius and stem height [13–18].
It is also likely that the inclusion of stand-level variables could improve DBH prediction
equations, as crown, stem, and stand attributes are interrelated [16,19].With the proper
algorithms, LiDAR or AP can also provide estimates of stand density using individual tree
detection and crown delineation [20,21].

Equations to predict tree DBH from tree height and stand parameters has been re-
ported for several important tree species [5,11,22–24]; however, there is currently limited
information for Eucalyptus globulus Labill. (E. globulus), Eucalyptus nitens (H.Deane &
Maiden) Maiden (E. nitens), and Pinus radiata D. Don (P. radiata). Furthermore, the functions
reported by Bi et al. [22] for P. radiata use only tree height to estimate DBH and do not
include crown area or any stand attribute.

Traditional inventory data are often the key input used for silvicultural decision
making, harvesting planning, growth projections, site quality assessments, fuel evaluations,
and risks assessments, among other uses. The use of unmanned aerial vehicles (UAVs)
with Lidar, RGB, and/or multispectral cameras, however, is becoming an increasingly
useful tool for forest monitoring [25], allowing for larger scale, more frequent, and lower
cost assessments, in comparison with traditional ground-based forest inventories. This
is particularly true in regions with poor accessibility. Advancements in remote sensing
now allows for the observation of structural, compositional, and functional forest attributes
in near-real-time, which will enable more agile, adaptive, and efficient silviculture [26],
which is important under the present circumstances of changing social and environmental
conditions. Therefore, it is important to incorporate the new information acquired by these
new techniques into decision support systems that have historically relied on traditional
inventory data.

The species in this study represent the most important commercial tree species in
Chile and many other countries due to their high yield and plasticity across a wide range of
environmental conditions [27,28]. There are over two million ha of P. radiata and Eucalyptus
plantations in Chile alone [29]. Developing equations to predict the DBH, volume, and
biomass of these species from LiDAR (or other remote sensing techniques), the estimated
height would prove valuable for estimating the merchantability of stands and determining
the amount of carbon sequestration provided by plantations, especially considering the
extent of these species across the world.

The main objective of this study was to produce equations to estimate DBH, stem
volume, and whole-tree above-stump biomass for individual E. globulus, E. nitens, and
P. radiata trees using tree height, crown area, and stand attributes as independent variables.
The specific objectives were (1) to develop equations for the three species to predict tree
DBH, stem volume, and whole-tree above-stump biomass using height alone; (2) to deter-
mine if the inclusion of crown area in these functions improved model predictions; and
(3) to assess if the inclusion of stand level attributes generates further improvements in the
prediction functions.
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2. Materials and Methods
2.1. Data Description

The dataset used in this study was previously reported by Gonzalez-Benecke et al. [30]
and consisted of two sources previously used to publish general biomass and volume
functions in Chile [31,32] and unpublished data provided by the Chilean forestry company
CMPC. The dataset consisted of 200 E. globulus, 119 E. nitens, and 316 P. radiata trees
measured at 22 (E. globulus), 20 (E. nitens), and 55 (P. radiata) sites, respectively. The data
were collected under different site, age, and management conditions, reflecting a variety
of silvicultural inputs (planting density, soil preparation, fertilization, weed control, and
thinning), site characteristics (physiographic region, soil type, and climate), genetics, and
developmental stage. The stand characteristics at the time of sampling were thought to
integrate differences in allometry due to varying silviculture practices, site qualities, and
stand ages. Details on site conditions and sampling procedures can be found in each of the
publications previously mentioned. Sample trees included the range of sizes encountered
at each study.

The data covered the geographic range where the species are planted in central Chile
(Figure 1), spanning 750 km from North to South. The climate ranged between warm-
summer Mediterranean (Csb) and temperate oceanic (Cfb) climates. The range of rainfall
was between 660 and 2280 mm year−1 and mean annual temperatures ranged between
10.4 to 14 ◦C [33]. Trees ages ranged from 2 to 13 (E. globulus), 2 to 16 (E. nitens), and 1 to 24
(P. radiata) years old with diameter outside bark at 1.3 m height (DBH, cm) and total height
(HT, m) ranging between 2.1 to 48.5 cm and 1.3 to 39.0 m, respectively (Table 1).

Forests 2022, 13, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 
2.1. Data Description 

The dataset used in this study was previously reported by Gonzalez-Benecke et al. 
[30] and consisted of two sources previously used to publish general biomass and volume 
functions in Chile [31,32] and unpublished data provided by the Chilean forestry com-
pany CMPC. The dataset consisted of 200 E. globulus, 119 E. nitens, and 316 P. radiata trees 
measured at 22 (E. globulus), 20 (E. nitens), and 55 (P. radiata) sites, respectively. The data 
were collected under different site, age, and management conditions, reflecting a variety 
of silvicultural inputs (planting density, soil preparation, fertilization, weed control, and 
thinning), site characteristics (physiographic region, soil type, and climate), genetics, and 
developmental stage. The stand characteristics at the time of sampling were thought to 
integrate differences in allometry due to varying silviculture practices, site qualities, and 
stand ages. Details on site conditions and sampling procedures can be found in each of 
the publications previously mentioned. Sample trees included the range of sizes encoun-
tered at each study. 

The data covered the geographic range where the species are planted in central Chile 
(Figure 1), spanning 750 km from North to South. The climate ranged between warm-
summer Mediterranean (Csb) and temperate oceanic (Cfb) climates. The range of rainfall 
was between 660 and 2280 mm year−1 and mean annual temperatures ranged between 10.4 
to 14 °C [33]. Trees ages ranged from 2 to 13 (E. globulus), 2 to 16 (E. nitens), and 1 to 24 (P. 
radiata) years old with diameter outside bark at 1.3 m height (DBH, cm) and total height 
(HT, m) ranging between 2.1 to 48.5 cm and 1.3 to 39.0 m, respectively (Table 1). 

 
Figure 1. Location of sample sites for E. globulus (filled circle), E. nitens (open circle), and P. radiata 
(grey triangle) trees growing in central Chile (map includes administrative divisions of the country). 

The dataset had several tree-level attributes, including DBH, HT, living crown width 
(CW, m), dry weight of the whole-tree above-stump biomass (TASB, kg), and total stem 
volume over bark (VOB, m3). CW was measured in two opposite directions and ground 

Figure 1. Location of sample sites for E. globulus (filled circle), E. nitens (open circle), and P. radiata
(grey triangle) trees growing in central Chile (map includes administrative divisions of the country).

The dataset had several tree-level attributes, including DBH, HT, living crown width
(CW, m), dry weight of the whole-tree above-stump biomass (TASB, kg), and total stem
volume over bark (VOB, m3). CW was measured in two opposite directions and ground
projected living crown area (CA, m2) was calculated based on CW measurements assuming
the shape as an ellipse. Further details on TASB determination can be found in Gonzalez-
Benecke et al. [30]. In addition to tree-level attributes, the dataset also contained several
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stand-level attributes, including the number of living trees per hectare (TPH, ha−1) and
stand age (AGE, years) (Table 1). TPH was not obtained for 3 stands of E. globulus, 4 stands
of E. nitens, and 6 stands of P. radiata. Site index (SI) was not available as a stand-level
attribute. A comparison among species for the general relationships of HT and CA with
DBH, TASB, and VOB is presented in Figure 2.

Table 1. Summary statistics of measured E. globulus (n = 200), E. nitens (n = 119), and P. radiata (n = 316, trees.

Species Attribute Unit Mean StdDev Minimum Maximum

E. globulus AGE year 7.0 3.7 2.3 13.3
HT m 14.8 7.4 3.8 32.8

DBH cm 13.2 5.4 3.4 27.0
CW m 2.8 1.0 0.7 5.4
CA m2 6.8 4.7 0.4 22.8
BA m2 ha−1 17.1 10.6 0.6 44.4

TPH trees ha−1 1269 292 625 1960
TASB kg 104.5 148.3 1.7 1100.9
VOB m3 0.152 0.227 0.002 1.680

E. nitens AGE year 8.0 4.4 2.3 16.3
HT m 19.9 8.1 6.2 38.8

DBH cm 17.3 7.0 5.5 34.5
CW m 3.8 1.0 1.9 7.3
CA m2 12.5 7.0 2.8 42.2
BA m2 ha−1 29.3 18.0 3.9 62.7

TPH trees ha−1 1139 116 919 1408
TASB kg 180.1 187.9 10.8 823.2
VOB m3 0.25 0.28 0.01 1.15

P. radiata AGE year 14.0 6.5 1.3 24.3
HT m 19.8 10.1 1.3 38.0

DBH cm 23.0 10.9 2.1 48.5
CW m 3.6 1.4 0.5 8.3
CA m2 11.9 9.0 0.2 54.1
BA m2 ha−1 27.8 17.4 0.7 65.9

TPH trees ha−1 739 323 220 1600
TASB kg 238.2 230.6 0.4 972.8
VOB m3 0.52 0.52 0.00 2.39

AGE: tree age (yrs.); HT: total tree height (m); DBH: outside bark diameter at 1.3 m height (cm); CW: living crown
width (m); CA: ground projected living crown area (m2); BA: basal area (m2 ha−1); TPH: number of living trees
per hectare (ha−1); TASB: total above-stump biomass (kg); VOB: stem volume over bark (m3).
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2.2. Model Description

We defined three sets of equations to estimate DBH, VOB, and TASB that depended
on data availability.

Set I. When only HT is known:
The model to estimate DBH, VOB, and TASB when only HT is known was:

DBH = a1·(HT − 1.3)a2 + εi (1)

TASB, VOB = a1·(HTa2) + εi (2)

where a1 and a2 are curve fit parameter estimates, and εi is the error term, with εi~N(0, σi
2).

Set II: When HT and CA are known:
The model to estimate DBH, VOB, and TASB when HT and CA are known was:

DBH = b1·(HT − 1.3)b2 ·
(

CAb3
)
+ εi (3)
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TASB, VOB = b1·
(

HT b2
)
·
(

CAb3
)
+ εi (4)

where b1 to b3 are curve fit parameter estimates, and εi is the error term, with εi~N(0, σi
2).

Set III: When HT, CA, AGE, and TPH are known:
Model fitting was conducted for all equations that include AGE and/or TPH in

addition to HT and CA. Within each species and for each of the DBH/biomass/volume
components, the model with significant parameters estimates for AGE and/or TPH with
the lowest AIC was finally selected. In order to detect multicollinearity among explanatory
variables, the variance inflation factor (VIF) was monitored, discarding variables included
in the model with VIF larger than 5 [34].

For E. globulus, the models to estimate DBH, VOB, and TASB when HT, CA, and the
stand-level variables AGE and TPH are known were:

DBH = c1·(HT − 1.3)c2 ·(CAc3)·(AGEc4) + εi (5)

TASB, VOB = c1·(HT c2)·(CAc3)·(AGEc4)·(TPHc5) + εi (6)

For E. nitens, the models to estimate DBH, VOB, and TASB when HT, CA, and the
stand-level variables AGE and TPH are known were:

DBH = c1·(HT − 1.3)c2 ·(CAc3)·(TPHc5) + εi (7)

TASB = c1·(HT c2)·(CAc3)·(AGEc4)·(TPHc5) + εi (8)

VOB = c1·(HT c2)·(CAc3)·(AGEc4) + εi (9)

For P. radiata, the models to estimate DBH, VOB, and TASB when HT, CA, and the
stand-level variables AGE and TPH are known were:

DBH = c1·(HT − 1.3)c2 ·(CAc3)·(TPHc5) + εi (10)

TASB = c1·(HT c2)·(CAc3)·(AGEc4)·(TPHc5) + εi (11)

VOB = c1·(HT c2)·(CAc3)·(TPHc5) + εi (12)

where c1 to c6 are curve fit parameter estimates, and εi is the error term, with εi~N(0, σi
2).

2.3. Model Fitting and Evaluation

All statistical analyses were performed using SAS 9.4 (SAS Inc., Cary, NC, USA).
For all parameter estimates reported, non-linear model fitting was carried out using the
procedure PROC NLIN. As the number of sampled trees per plot was seven or less trees,
plot effect was not included in the analysis as we assumed that trees were taken from
spatially independent locations. We used a 10-fold cross validation [34] to evaluate the
predictive ability of all equations, randomly splitting the dataset into 10 subsets with
approximately equal numbers of observations. In the 10-fold cross validation two measures
of accuracy were used for each variable: (i) root mean square difference (RMSD) and
(ii) mean bias error (Bias, predicted-observed).

3. Results
3.1. Model Fitting

The prediction equations and parameter estimates to calculate DBH, TASB, and VOB
using tree HT, CA, and stand-level parameters for E. globulus, E. nitens, and P. radiata
trees growing in central Chile are presented in Tables 2–4. All parameter estimates were
significant at p < 0.05. The models to calculate DBH, TASB, and VOB using tree HT alone
(model set I) had satisfactory predictive power for all species and variables. The models
to estimate DBH from HT alone showed a better fit than for TASB and VOB with Adj-R2

values ranging from 0.933 for E. globulus to 0.975 for P. radiata. The Adj-R2 values for TASB
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and VOB were still high for all species ranging from 0.784 (VOB for E. globulus) to 0.901
(VOB for P. radiata).

Table 2. Parameter estimates and fit statistics of the selected general DBH/biomass/volume functions
for E. globulus trees growing in Central Chile.

Model Set Variable Model Parameter Parameter
Estimate SE Adj-R2 RMSE CV %

I DBH = a1·(HT − 1.3)a2 a1 2.075475 0.241144 0.933 3.85 29.1
a2 0.737353 0.040622

TASB = a1·(HTa2 ) a1 0.07582 0.040413 0.813 78.39 75.0
a2 2.54799 0.160292

VOB = a1·(HTa2 ) a1 0.000064929 0.000042188 0.784 0.127 83.5
a2 2.712235 0.19464

II DBH = b1·(HT − 1.3)b2 ·
(

CAb3
)

b1 1.766367 0.181048 0.953 3.24 24.5

b2 0.642174 0.036413
b3 0.224741 0.026321

TASB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.059127 0.029441 0.833 74.04 70.8

b2 2.452531 0.14752
b3 0.281297 0.060094

VOB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.000050198 0.000031331 0.797 0.123 80.8

b2 2.642533 0.184052
b3 0.24399 0.067749

III DBH

= c1·(HT − 1.3)c2 ·(CAc3 )·(AGEc4 )

c1 1.909369 0.195751 0.956 3.12 23.6
c2 0.380361 0.07423
c3 0.213189 0.024686
c4 0.307518 0.078219

TASB
= c1·(HTc2 )·(CAc3 )·(AGEc4 )·(TPHc5 )

c1 1.60693 1.678005 0.862 67.22 64.3
c2 1.522111 0.188442
c3 0.353128 0.061234
c4 0.42111 0.22933
c5 −0.233854 0.150093

VOB
= c1·(HTc2 )·(CAc3 )·(AGEc4 )

c1 0.000044365 0.000023945 0.837 0.110 72.4
c2 1.496324 0.220388
c3 0.248755 0.05662
c4 1.510607 0.215681

HT: total tree height (m); DBH: outside bark diameter at 1.3 m height (cm); CA: grown projected living crown area
(m2); AGE: tree/stand age (yrs.); TPH: number of living trees per hectare (ha−1); TASB: total above-stump biomass
(kg); VOB: stem volume over bark (m3); SE: standard error; Adj-R2: adjusted coefficient of determination; RMSE:
root mean square error (same units as variable); CV: coefficient of variation of the RMSE (100·RMSE/mean). For
all parameter estimates, p < 0.05.

Table 3. Parameter estimates and fit statistics of the selected general DBH/biomass/volume functions
for E. nitens trees growing in Central Chile.

Model Set Variable Model Parameter Parameter
Estimate SE Adj-R2 RMSE CV %

I DBH = a1·(HT − 1.3)a2 a1 1.593724 0.246016 0.964 3.57 20.6
a2 0.819012 0.049207

TASB = a1·(HTa2 ) a1 0.108287 0.062418 0.864 95.82 53.2
a2 2.398404 0.168986

VOB = a1·(HTa2 ) a1 0.000061349 0.00003386 0.881 0.130 51.9
a2 2.679173 0.160883

II DBH
= b1·(HT − 1.3)b2 ·

(
CAb3

) b1 1.10718 0.159378 0.973 3.09 17.8
b2 0.771231 0.043692
b3 0.20542 0.029766

TASB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.039541 0.020778 0.898 83.11 46.2

b2 2.399547 0.146035
b3 0.396369 0.064146

VOB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.000021383 0.000010341 0.915 0.110 43.8

b2 2.695027 0.133308
b3 0.394597 0.057055
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Table 3. Cont.

Model Set Variable Model Parameter Parameter
Estimate SE Adj-R2 RMSE CV %

III DBH

= c1·(HT − 1.3)c2 ·(CAc3 )·(TPHc5 )

c1 1.220236 0.892918 0.973 3.04 17.6
c2 0.770766 0.043979
c3 0.205358 0.029863
c5 −0.013596 0.10031

TASB
= c1·(HTc2 )·(CAc3 )·(AGEc4 )

c1 0.034478 0.018895 0.915 76.61 42.5
c2 1.9837 0.177463
c3 0.416925 0.05913
c4 0.600451 0.173335

VOB
= c1·(HTc2 )·(CAc3 )·(AGEc4 )

c1 0.000021001 0.000010266 0.920 0.107 42.7
c2 2.360592 0.167086
c3 0.41502 0.054414
c4 0.443079 0.149888

HT: total tree height (m); DBH: outside bark diameter at 1.3 m height (cm); CA: grown projected living crown area
(m2); AGE: tree/stand age (yrs); TPH: number of living trees per hectare (ha−1); TASB: total above-stump biomass
(kg); VOB: stem volume over bark (m3); SE: standard error; Adj-R2: adjusted coefficient of determination; RMSE:
root mean square error (same units as variable); CV: coefficient of variation of the RMSE (100·RMSE/mean). For
all parameter estimates, p < 0.05.

Table 4. Parameter estimates and fit statistics of the selected local and general DBH/biomass/volume
functions for P. radiata trees growing in central Chile.

Model Set Variable Model Parameter Parameter
Estimate SE Adj-R2 RMSE CV %

I DBH = a1·(HT − 1.3)a2 a1 2.780438 0.212548 0.975 4.01 17.4
a2 0.736776 0.023889

TASB = a1·(HTa2 ) a1 0.256462 0.09421 0.890 109.90 46.1
a2 2.194259 0.107627

VOB = a1·(HTa2 ) a1 0.000316672 0.000115223 0.901 0.232 44.4
a2 2.368601 0.10628

II DBH = b1·(HT − 1.3)b2 ·
(

CAb3
)

b1 2.393191 0.142812 0.986 3.05 13.3

b2 0.640371 0.019586
b3 0.179848 0.01211

TASB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.180918 0.046562 0.947 76.56 32.1

b2 1.947392 0.076617
b3 0.445083 0.025744

VOB = b1·
(

HTb2
)
·
(

CAb3
)

b1 0.000213594 0.000058107 0.947 0.170 32.6

b2 2.179969 0.080019
b3 0.389441 0.024942

III DBH

= c1·(HT − 1.3)c2 ·(CAc3 )·(TPHc5 )

c1 3.595495 0.638804 0.986 3.06 13.3
c2 0.628486 0.022015
c3 0.15617 0.014439
c5 −0.048804 0.020124

TASB
= c1·(HTc2 )·(CAc3 )·(AGEc4 )·(TPHc5 )

c1 1.229341 0.549664 0.952 73.38 30.8
c2 1.702726 0.106506
c3 0.350139 0.02972
c4 0.164428 0.106054
c5 −0.214903 0.041324

VOB
= c1·(HTc2 )·(CAc3 )·(TPHc5 )

c1 0.001177 0.000518775 0.949 0.168 32.2
c2 2.08249 0.081596
c3 0.300946 0.030124
c5 −0.183982 0.039884

HT: total tree height (m); DBH: outside bark diameter at 1.3 m height (cm); CA: grown projected living crown area
(m2); AGE: tree/stand age (yrs); TPH: number of living trees per hectare (ha−1); TASB: total above-stump biomass
(kg); VOB: stem volume over bark (m3); SE: standard error; Adj-R2: adjusted coefficient of determination; RMSE:
root mean square error (same units as variable); CV: coefficient of variation of the RMSE (100·RMSE/mean). For
all parameter estimates, p < 0.05.

For E. globulus, the models to estimate DBH, TASB, and VOB that use only HT (model
set I) were improved when CA was included (model set II) (Table 2). For example, when
CA was included for DBH, the Adj-R2 increased from 0.933 to 0.953, the RMSE decreased
from 3.85 to 3.24 cm, and the coefficient of variation of the RMSE (CV) decreased from 29%
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to 24%. For TASB and VOB, the Adj-R2 increased from 0.813 to 0.833 and from 0.784 to
0.797 when CA was included, respectively. The RMSE also decreased from 78.4 to 74.0 kg,
and from 0.127 to 0.123 m3, for TASB and VOB, respectively. When the stand attributes
AGE, and/or TPH were included (model set III), further improvements were observed.
For example, for DBH, the Adj-R2 increased to 0.956 and RMSE decreased to 3.12 cm. A
similar trend was observed for TASB and VOB such that the Adj-R2 increased to 0.863 and
0.837, and RMSE decreased to 67.2 kg and 0.110 m3, respectively (Table 2). The parameter
estimate for AGE was significant for all three traits, being always positive. The parameter
estimate for TPH was only significant for TASB, being negative.

The models for estimating the DBH, TASB, and VOB of E. nitens were also improved
when CA was included in addition to HT (model set II). When CA was included in the
model to estimate TASB, the Adj-R2 increased from 0.864 to 0.898, the RMSE decreased
from 95.8 to 83.1 kg, and the CV decreased from 53 to 46% (Table 3). For DBH and VOB,
the Adj-R2 increased from 0.964 to 0.973 and from 0.881 to 0.915 while the RMSE decreased
from 3.6 to 3.1 cm and from 0.130 to 0.110 m3, respectively. Similar to E. globulus, when the
stand attributes AGE and/or TPH were also included (model set III), further improvements
were observed. For example, for TASB, the Adj-R2 increased to 0.915, the RMSE decreased
to 76.6 kg, and the CV decreased to 42.5%. A similar trend was observed for VOB with the
Adj-R2 increasing to 0.920 while the RMSE decreased to 0.107 m3 (Table 3). For DBH, even
though the parameter estimate for TPH was significant, it produced little improvement in
model performance. When significant, the parameter estimate for TPH was negative. By
contrast, when significant, the parameter estimate for AGE was positive.

The dataset of P. radiata included 116 pruned and 200 unpruned trees. Covariance test
showed no effect of pruning condition on the relationship between CA and both DBH and
HT (p > 0.137). Based on those results, we decided to fit a single function for both pruned and
unpruned P. radiata trees. Similar to the other species, the models to estimate the DBH, TASB,
and VOB of P. radiata that used only HT (model set I) were improved when CA was included
(model set II) (Table 4). For example, when CA was included in the model to estimate VOB,
the Adj-R2 increased from 0.901 to 0.947, the RMSE decreased from 0.232 to 0.170 m3, and
the CV decreased from 44 to 33%. DBH and TASB also showed improvements, with Adj-R2

increasing from 0.975 to 0.986 and from 0.890 to 0.952 while RMSE decreased from 4.01 to
3.05 cm and from 109.9 to 76.6 kg, respectively (Table 4). For TASB, further improvement
was observed when the stand attributes AGE and TPH were also included (model set III),
with Adj-R2 increasing to 0.952 and RMSE decreased to 73.4 kg. For DBH and VOB, little
improvement was observed when the stand attributes AGE and/or TPH were included. The
parameter estimate for TPH was significant for all variables, being always negative. When
significant, the parameter estimate for AGE was negative.

3.2. Model Evaluation

Figure 3 shows examples of model evaluation for the DBH/VOB/TASB estimations
for all three species. Scatterplots of the observed against the predicted values for all three
variables in model set I revealed significant heteroscedasticity, such that prediction errors
tended to increase with tree size (upper panel in Figure 3). When CA was included in
addition to HT (model set II), the heteroscedasticity was not observed (center panel in
Figure 3). Further improvement was observed when AGE and/or TPH were included
(model set III), such that the variability of DBH, TASB, and VOB was similar across the
range of predicted values (bottom panel in Figure 3).

A summary of the 10-fold cross validation test used for all selected models is shown
in Table 5. There was good agreement between observed and predicted values across all
variables for all three species. For the models to estimate DBH/VOB/TASB using only HT
as the explanatory variable (model set I), bias ranged between an 8.5% underestimation for
VOB of E. globulus to a 2.4% overestimation for VOB of E. nitens. Estimates agreed better with
observed values when CA was included (model set II). For example, for VOB, the RMSD
was reduced from 75.6, 47.6, and 43.2% (model V1) to 72.6, 36.2, and 31.3% (model V2) for
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E. globulus, E. nitens, and P. radiata, respectively. For TASB, the RMSD was reduced from
67.8, 48.3, and 44.8% (model B1) to 63.2, 39.3, and 31.0% (model B2) for E. globulus, E. nitens,
and P. radiata, respectively. Further improvement was observed when AGE and/or TPH
were added to the model that already included HT and CA (model set III). For example, for
DBH, the RMSD was reduced from 23.8, 15.9, and 12.8% (model D2) to 23.2, 15.7, and 12.8%
(model D3) for E. globulus, E. nitens, and P. radiata, respectively. Including stand variables
AGE and/or TPH had little effect on model bias for all three species.
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Figure 3. Model evaluation of DBH (left), TASB (center), and VOB (right) models for E. globulus,
E. nitens, and P. radiata. Observed vs predicted (simulated) values using model set I (upper panel;
only HT as independent variable), model set II (center panel; HT and CA as independent variables),
and model set III (bottom panel; HT, CA, and AGE and/or TPH as independent variables).

Table 5. Summary of model evaluation statistics using 10-fold cross validation for
DBH/biomass/volume estimations for E. globulus, E. nitens, and P. radiata trees.

Species Variable Model ID Explanatory
Variables

¯
O

¯
P RMSD Bias

E. globulus DBH D1 HT 13.22 13.16 3.67 (27.8) 0.06 (0.4)
D2 HT, CA 13.22 13.16 3.15 (23.8) 0.06 (0.4)
D3 HT, CA, AGE 13.22 13.16 3.07 (23.2) 0.07 (0.5)

TASB B1 HT 107.28 100.03 72.73 (67.8) 7.25 (6.8)
B2 HT, CA 107.28 101.31 67.82 (63.2) 5.97 (5.6)
B3 HT, CA, AGE, TPH 107.28 98.87 63.44 (59.1) 8.41 (7.8)

VOB V1 HT 0.16 0.14 0.12 (75.6) 0.01 (8.5)
V2 HT, CA 0.16 0.15 0.11 (72.6) 0.01 (7.6)
V3 HT, CA, AGE 0.16 0.14 0.10 (66.0) 0.01 (9.1)

E. nitens DBH D1 HT 17.23 17.21 3.37 (19.6) 0.03 (0.2)
D2 HT, CA 17.23 17.13 2.74 (15.9) 0.10 (0.6)
D3 HT, CA, TPH 17.23 17.14 2.70 (15.7) 0.09 (0.5)

TASB B1 HT 177.19 178.68 85.62 (48.3) −1.49 (−0.8)
B2 HT, CA 177.19 176.77 69.63 (39.3) 0.42 (0.2)
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Table 5. Cont.

Species Variable Model ID Explanatory
Variables

¯
O

¯
P RMSD Bias

B3 HT, CA, AGE 177.19 172.34 68.64 (38.7) 4.85 (2.7)
VOB V1 HT 0.25 0.25 0.12 (47.6) −0.01 (−2.4)

V2 HT, CA 0.25 0.25 0.09 (36.2) 0.00 (−1.5)
V3 HT, CA, AGE 0.25 0.25 0.09 (36.2) 0.00 (−0.3)

P. radiata DBH D1 HT 23.18 23.12 3.95 (17.0) 0.07 (0.3)
D2 HT, CA 23.18 23.10 2.96 (12.8) 0.09 (0.4)
D3 HT, CA, TPH 23.14 23.06 2.96 (12.8) 0.08 (0.3)

TASB B1 HT 240.55 241.74 107.88 (44.8) −1.19 (−0.5)
B2 HT, CA 240.55 242.12 74.67 (31.0) −1.57 (−0.7)
B3 HT, CA, AGE, TPH 240.13 242.23 70.53 (29.4) −2.10 (−0.9)

VOB V1 HT 0.53 0.53 0.23 (43.2) 0.00 (−0.8)
V2 HT, CA 0.53 0.53 0.17 (31.3) 0.00 (−0.8)
V3 HT, CA, TPH 0.53 0.53 0.16 (30.5) −0.01 (−1.1)

HT: total tree height (m); DBH: outside bark diameter at 1.37 m height (cm); CA: ground projected living
crown area (m2); AGE: tree/stand age (yrs.); TPH: number of living trees per hectare (a−1); BA: basal area
(m2 ha−1); TASB: total above-stump biomass (kg); VOB: stem volume over bark (m3); O: mean observed value;
P: mean predicted value; RMSD: root of mean square difference (same unit as observed value); Bias: mean
absolute bias (predicted-observed; same unit as observed value). Values in parenthesis are percentage relative to
observed mean.

4. Discussion

The presented functions provided adequate estimates of E. globulus, E. nitens, and
P. radiata for DBH, TASB, and VOB using various combinations of tree height, crown area,
and stand parameters, such as age and stocking. The dataset used in this analysis included
a large number of individual trees with a wide range of sizes over a large geographical area
in central Chile with varying soils, climates, and productivities. The dataset for P. radiata
included pruned and unpruned trees and the reported functions were fit using both pruned
and unpruned trees as we found no effect of the pruning condition on the relationship
between CA and DBH and HT. The stands where tree measurements were collected also
represent a wide range of ages, stocking levels, and basal areas. Due to this, we are
confident that the presented functions may be applied to stands planted with these species
across a broad range of sites with varying environmental and management conditions.
Furthermore, the height data included in our dataset was measured directly as trees were
felled for destructive sampling and, therefore, avoided potential errors associated with
other methods of measuring tree height [7]. When combined with LiDAR or other remote
sensing techniques capable of estimating tree height, the simple inputs, generality, and
accuracy of the presented functions provide a powerful tool for assessing tree diameter,
aboveground biomass, and stem volume over a large geographic area.

Three sets of functions were presented for each species and variable that varied in
the number of inputs required allowing for the selection of different functions depending
on desired accuracy and available inputs. The functions using only HT to predict DBH
were able to explain 93%–98% of the variability in field measured DBH. This is higher
than the Adj-R2 of 0.77 reported by Gonzalez-Benecke et al. [5] for P. palustris but similar
to the R2 values reported by Filipescu et al. for several conifer species, which ranged
between 0.84–0.91 [24]. The functions in model set I did demonstrate some degree of
heteroscedasticity such that prediction errors increased with increasing tree size. This is
likely due to the fact that trees tend to plateau in height as they age while continuing to
grow in diameter, an effect that has been observed for several tree species [22,23]. When
CA was added to the prediction function, there was no longer heteroscedasticity likely due
to trees continuing to increase in crown area as they age even while HT plateaus, at least
for the range of data included in this study.

The inclusion of CA increased the accuracy of the prediction functions for all the
species in this study. This effect was also seen to a much greater degree in Gonzalez-
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Benecke et al. [5] where the Adj-R2 of functions to predict the DBH of P. palustris increased
from 0.77 to 0.90 when CA was included in addition to HT. The Adj-R2 of the functions
to estimate tree DBH from HT and CA in this study (0.96–0.99) were higher than those
reported elsewhere [5,11,18].

The inclusion of stand variables further improved the accuracy of the prediction
functions, although to a lesser degree than the inclusion of CA. The effect of TPH and AGE
on DBH was significant for all species with the exception of AGE for E. globulus. When
significant, the parameter estimates for AGE were always positive, indicating that older
trees of the same HT and CA would have larger DBH (and, hence, VOB and TASB) or
higher wood density. When significant, the parameter estimates for TPH were always
negative, indicating that trees of the same HT, CA, and AGE would have smaller DBH (and,
hence, VOB and TASB) as stand density increases. A similar effect was reported by Pinkard
and Neilsen [35] for E. nitens, who reported smaller TASB for trees growing in denser
stands. It is possible that the inclusion of stand variables that reflect site quality, such as
site index or dominant height, could further improve the functions, as these factors have
been shown to be important by others [5]. Unfortunately, we were not able to include either
site index or dominant height into the dataset. Nevertheless, the Adj-R2 of the presented
functions that included AGE/TPH was already high (0.86–0.98).

The accuracy and precision of the functions to estimate tree TASB were lower than
for DBH, but still had Adj-R2 values above 0.81. The functions to estimate TASB from HT
alone had an average Adj-R2 of 0.85, which was improved to 0.89 when CA was included.
This effect was most pronounced for P. radiata. Our Adj-R2 values are similar to the value
of 0.87 reported by Popescu [11] for estimating the biomass of P. taeda from LiDAR derived
measurements. Similar to DBH, the TASB functions were improved by including stand
variables, although to a lesser degree than including CA. The effect of AGE on TASB was
significant and positive for all species, reflecting that trees increase in biomass as they
age. When significant (E. globulus and P. radiata), the effect of TPH on TASB was negative
reflecting that, for a given HT, the biomass of individual trees of these species decreased
with increasing stocking density. The lack of significance of TPH on E. nitens may be an
effect of the reduced range of stocking on the stands of E. nitens sampled, where TPH
varied between 919 and 1408 trees ha−1, a smaller span when compared to E. globulus
(625–1960 trees ha−1) or P. radiata (220–1600 trees ha−1). It is worth noting that Eucalyptus
stands in Chile are managed mainly for pulp production and stands with densities outside
the observed ranges are unusual [36,37].

Similar to DBH and TASB, the functions to estimate VOB were improved by adding
CA and, to a lesser degree, stand variables. This effect was also seen in Gonzalez-Benecke
et al. [5]. The only stand variable that was significant for E. globulus and E. nitens was AGE,
which was positive and reflects the increases in stem volume seen as trees age. For P. radiata,
TPH was significant and negative reflecting that trees of a given HT tend to have lower VOB
when growing at higher densities. The wide range of stocking for P. radiata sampled stands,
where TPH ranged between 220 and 1600 trees ha−1, contributed to capture this effect. In
Chile, P. radiata stands are commonly managed with one or two thinnings, with standard
planting density of about 1250 to 1667 trees ha−1, reaching a final stocking between 300 to
500 trees ha−1 on thinned stands [37,38].

5. Conclusions

The reported functions have many important economic and ecological applications,
especially when combined with remote sensing techniques capable of estimating tree
height and projected crown area. Potential uses include estimating timber appraisal and the
carbon stock of forest ecosystems, determining feedstocks for bioenergy production [39–41],
evaluating fire hazard [42,43], and assessing the risk of soil erosion [40].

Even though the extensive model fitting dataset used in this study gives us confidence
that the equations can be used over a wide range of sites and management conditions,
we recommend using these equations within the range of the dataset shown in Table 2.
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These new equations are intended as a tool to support and guide management decisions for
the three species. The integration of these functions with remote sensing techniques into
stand-level productivity models should enhance the flexibility and strength of the DBH,
volume, and biomass predictions from those models, at a larger scale and in a more time
efficient way. Future research is planned in order to use the equations for estimating stand
basal area, volume, and biomass using LiDAR data.
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