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Abstract: Water-stable isotopic (WSI) data are widely used in hydrological modelling investigations.
However, the long-term monitoring of these tracers at high-temporal resolution (sub-hourly) remains
challenging due to technical and financial limitations. Thus, alternative tracers that allow continuous
high-frequency monitoring for identifying fast-occurring hydrological processes via numerical
simulations are needed. We used a flexible numerical flow-partitioning model (TraSPAN) that
simulates tracer mass balance and water flux response to investigate the relative contributions of
event (new) and pre-event (old) water fractions to total runoff. We tested four TraSPAN structures
that represent different hydrological functioning to simulate storm flow partitioning for an event in a
headwater forested temperate catchment in Western, Oregon, USA using four-hour WSI and 0.25-h
electrical conductivity (EC) data. Our results showed strong fits of the water flux and tracer signals
and a remarkable level of agreement of flow partitioning proportions and overall process-based
hydrological understanding when the model was calibrated using either tracer. In both cases, the best
model of the rainstorm event indicated that the proportion of effective precipitation routed as event
water varies over time and that water is stored and routed through two reservoir pairs for event and
pre-event. Our results provide great promise for the use of sub-hourly monitored EC as an alternative
tracer to WSI in hydrological modelling applications that require long-term high-resolution data to
investigate non-stationarities in hydrological systems.

Keywords: high-resolution tracer data; rainfall-runoff modelling; hydrograph separation; electrical
conductivity/specific conductance; tracer hydrology; water stable isotopes

1. Introduction

The identification of the water sources contributing to runoff is fundamental to understand the
linkage and interactions between water and biogeochemical cycles and the transport of contaminants
and solutes at the catchment and landscape scales [1–4]. During precipitation events total runoff can
be partitioned into event—“new” water from incoming precipitation—and pre-event water—“old”
water stored in the catchment prior to a given precipitation event [5,6]. Depending on the
catchment conditions (e.g., vegetation, soil type, geology, topography, antecedent moisture) and
event characteristics (e.g., precipitation amount and temporal variability) the event and pre-event
water fractions vary. As such, understanding the spatial and temporal variability of the contributions
of different water pools to the hydrograph is not only a fundamental question in hydrological
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science [7], but is also needed for the implementation of effective water resources management
strategies worldwide [8].

Given that the contribution of different water pools to total runoff is time dependent owing to
the time variant nature of flow response processes [7,9–12], we struggle to apply effective monitoring
strategies in catchments with different environmental conditions [13]. Conservative (e.g., water stable
isotopes, 2H and 18O, and chloride) and non-conservative (e.g., electrical conductivity (EC) and silica)
tracers have been used to constrain mixing models of flow partitioning at the event scale (e.g., [14–18]).
One of the most commonly applied methods is tracer-based two-component end member mixing
analysis [5,6,19,20] to quantify the proportions of event and pre-event water to total runoff using a
simple mass balance (cf., Buttle [5] and Klaus and Mcdonnell [6] for reviews). However, since these
models only account for the mixing of the tracer within a hydrological system, they provide only
limited information about the combined flow and tracer mixing dynamics in response to precipitation
inputs. Therefore, these models have limited ability to provide a process-based understanding of
catchment behavior [21–23].

In response to this challenge, numerical models in which the tracer mass balance and the
hydrological flow response are coupled have been developed [24–27]. These models allow for the
simultaneous simulation of the streamflow hydrograph—water flux—and the tracer mixing. In general,
these models account for the water flux partitioning by applying the unit hydrograph approach, and the
tracer mixing using travel time distributions (TTDs) [28]. The application of TTDs accounts for the
estimation of the possible travel times of the tracer within the system. That is, the time that a water
molecule takes to travel within a hydrological system from the moment it enters as precipitation
or snowmelt to the time it exists as runoff [29,30]. The TTDs shapes are used to identify runoff
processes [7,29,31,32] by providing information about the physical processes that influence the internal
mixing of different water sources.

Despite the advantages of numerical approaches for hydrograph separation, the availability
of long-term high-resolution water geochemical data remains a challenge. To date, the majority of
applications of tracer-based hydrograph separation techniques have been conducted using WSIs as
tracers [6]. Despite their recognized usefulness and reliability (being conservative), WSIs sampling
at fine resolution (e.g., sub-hourly) is still sparse given high associated costs and, thus, limits the
description of the rapid response of streamflow to water inputs and the inter-storm variation of the
input isotopic composition [33–36]. This limitation has resulted in high uncertainties in the estimation
of flow components [35,37]. Recent studies have monitored WSIs at high-temporal resolution (every
30 min) [38–43] and applied simple mixing models to partition flow components [9,18,44,45]. However,
while technological developments currently allow the deployment of field analyzers to measure the
WSI of inputs and outputs (e.g., rainfall and streamflow) at high temporal resolution it is unfeasible
to broadly implement such analyzers. Thus, there is a need for alternative inexpensive and low
maintenance water quality parameters (i.e., tracers) that allow investigating internal catchment
processes at a high resolution [13,46].

Electrical conductivity, or specific conductance (EC) of water, is an alternative tracer often
used in flow partitioning and water quality studies, either alone or in combination with WSIs
(e.g., [16,20,47–54]). The main advantage of using EC is that it can be continuously monitored at high
temporal resolution (seconds to minutes) using inexpensive in-stream probes [13,46,48]. Despite the
non-conservative nature of EC as it highly depends on the water contact time with the mineral
substrate, in particular [53,55,56], EC has yielded similar streamflow portioning results than WSIs
using traditional mass balance models [16,51]. However, its effectiveness has not been tested against
WSI using sophisticated hydrological modeling approaches.

In this study, we compare the results of a flow partitioning tracer-based hydrological model
calibrated using WSIs and EC. Our specific objectives are: (1) to evaluate different model structures
(representing different assumptions of the internal catchment hydrological functioning) and determine
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the model structure that best simulates flow partitioning using WSI and EC data; and (2) to compare
the process-based hydrological understanding obtained from the models calibrated using each tracer.

2. Materials and Methods

2.1. Study Area

This study was conducted at the Mack Creek catchment (5.8 km2) in the H.J. Andrews
Experimental Forest in the Western Cascades of Oregon (Figure 1). Mack Creek is a tributary of
Lookout Creek, which drains into the Blue and McKenzie rivers within the Willamette River Basin.
Glaciation occurred in the catchment leaving U-shaped valley morphologies with a steep slope (average
46%). The elevation ranges between 758 and 1610 m above sea level (a.s.l.) [57,58]. The catchment is
underlie by ridge-capping andesite lava flows (upper Sardine Formation and Pliocene flows). The soils
in the catchment are gravelly loams at high elevation that transition into the predominantly gravelly
sandy loams that characterize over 70% of Mack Creek drainage area [59]. The forest is dominated
by 400–500 year-old coniferous trees, including Douglas fir (Psuedotsuga menziesii), western hemlock
(Tsuga heterophylla), and western red cedar (Thuja plicata). The climate is Mediterranean with wet,
mild winters and dry summers. Fall and winter precipitation falls as a mix of rain and snow and
may accumulate and last from early November to late June [60]. Mean annual precipitation (between
2002 and 2016) was 2243 and 2709 mm at the CENMET (1018 m a.s.l.) and UPMET (1294 m a.s.l.)
meteorological stations (Figure 1), respectively. However, precipitation in 2015—when we conducted
this study—was only 51% of this 15-year average and fell almost entirely in the form of rain.
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as part of the NSF Long-Term Ecological Research (LTER) program [61]. We used Q data derived 
from an 18-in flume (GSMACK; Figure 1) [61] and mean P values across the UPMET station and a 
precipitation tipping bucket located in the roof top of the GSMACK [62]. The 8-in diameter GSMACK 
gauge is heated with a propane heater. Continuous precipitation is recorded with depth 
measurements using a Stevens A-35 chart recorder or a Stevens PAT water level shaft encoder. The 
UPMET precipitation gauge is stand-alone composed of standing pipe with tank gauge, a propane-
heated 20-inch diameter orifice, surrounded by a Valdai-style double wind fence. A temperature 

Figure 1. Location of Mack Creek Catchment within the H.J. Andrews Experimental Forest in Western
Oregon. Black triangles indicate the locations of the meteorological stations (PRIMET, CENMET,
and UPLMET) along with the location of the precipitation and stream gauging stations at Mack Creek
(GSMACK).

2.2. Hydrometric Data Collection

We monitored water fluxes—precipitation (P) and streamflow (Q)—during a large rainstorm
event between 28 October and 7 November 2015. We used 5-min resolution P and Q data maintained as
part of the NSF Long-Term Ecological Research (LTER) program [61]. We used Q data derived from an
18-in flume (GSMACK; Figure 1) [61] and mean P values across the UPMET station and a precipitation
tipping bucket located in the roof top of the GSMACK [62]. The 8-in diameter GSMACK gauge is
heated with a propane heater. Continuous precipitation is recorded with depth measurements using
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a Stevens A-35 chart recorder or a Stevens PAT water level shaft encoder. The UPMET precipitation
gauge is stand-alone composed of standing pipe with tank gauge, a propane-heated 20-inch diameter
orifice, surrounded by a Valdai-style double wind fence. A temperature probe controls the orifice
heating by turning a pump and heater on/off. The stand-alone rain gauge was specifically developed
to withstand heavy snow with depths up to 3–4 m and windy condition.

2.3. Water Stable Isotope Data Collection and Analysis

We collected 44,500 mL streamflow grab samples every 4 h using an automatic autosampler
(ISCO-3700). A grab sample was also collected before the event in order to characterize the streamflow
isotopic composition during base flow conditions (i.e., pre-event). We described the event isotopic
signature of precipitation at a meteorological station located at 430 m a.s.l. (PRIMET; Figure 1) with
a sequential rainfall sampler designed to collect up to 12,200-mL water samples to characterize the
temporal variability of water stable isotopes [33,63]. The sequential collector was located in a clearing,
thus, we assumed that the difference between the isotopic signature of direct rainfall and throughfall
was minimal [64]. All water samples for isotopic analysis were collected and stored in 20-mL glass
bottles with conical inserts without headspace and kept in dark at relatively cool conditions (~15 ◦C)
to avoid fractionation by evaporation until their analysis was conducted at the Watershed Processes
Laboratory at Oregon State University.

We measured the water-stable isotopes (δ18O) in all samples using a cavity ring down spectroscopy
liquid and vapor isotopic analyzer (Picarro L2130-i, Picarro Inc, Santa Clara, CA). We ran all samples
under high-precision, including six injections per sample. The first three injections were discarded
to account for memory effects. Two internal (secondary) standards (MET1, δ18O = −14.49‰ and
BB1, δ18O = −7.61‰) were used to develop calibration curves, while a third internal standard
(ALASKA1, δ18O = −11.09‰) was used to estimate a drift correction equation (drift was always
below 0.000152‰). All internal standards were calibrated against the IAEA primary standards for
the Vienna Standard Mean Ocean Water (VSMOW2, δ18O = 0.0‰), Greenland Ice Sheet Precipitation
(GISP, δ18O = −24.76‰), and Standard Light Antarctic Precipitation (SLAP2, δ18O = −55.5‰).
The uncertainty in our secondary standards (i.e., standard deviation) is <0.01‰. Based on >50
duplicate samples (collected concurrently under comparable conditions) in rainfall and streamflow,
we estimated an internal laboratory precision of 0.03‰. The external accuracy of our laboratory was
0.06‰. This accuracy was computed as the mean difference between 60 estimated values and a known
water standard. We used only the internal precision as an overall measure of accuracy although we
acknowledge that there are other sources of uncertainty [65].

2.4. Electrical Conductivity Measurements

We measured the conductance of the sequential water samples collected for the water stable
isotopes analysis using a Hanna® Multiparameter (HI9828) Water Quality Portable Meter and used
these measurements to characterize the EC of the precipitation during the event. The portable meter
was calibrated in the laboratory following manufacture guidelines. The manufacture accuracy of this
instrument is 1% or 1 µS/cm (whichever is larger). Replicate measurements for 30 samples indicated
a precision of <5%. The EC measurements were conducted after the 20-mL samples for water stable
isotopes were collected to avoid sample contamination. Streamflow EC was continuously recorded
(every 5 min) at the GSMACK gauge with a Campbell Scientific CS547A EC and temperature probe
(with a 5% accuracy) [66]. The EC data is corrected with a temperature coefficient based on YSI Pro30
conductivity instrument [66].

2.5. Tracer-Based Hydrograph Separation Modeling

In recent years, different approaches that allow the incorporation of geochemical tracers mixing
into hydrological models have been developed. The application of conceptual models using TTD
functions [25,27,67] and ranked storage-age-selection (rSAS) functions [68] are amongst the most
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frequently applied approaches. We selected the former approach as it allows for the implementation of
different model structures (representing different catchment hydrological behavior) that have been
widely tested using WSI for model calibration in other studies and, thus, allow for a direct comparison
with our results using both high-resolution WSIs and EC data.

We used the flexible modelling framework developed by Segura et al. [25] that considers both
the tracer mass balance and the hydrological flow response during rainfall-runoff events. We refer
to this model as TraSPAN (Tracer-based Streamflow Partitioning ANalysis model). TraSPAN shares
similarities with other tracer-based hydrological models (e.g., [24,27]). It allows for the implementation
of different model structures to simulate different levels of hydrological complexity, assuming that
rainfall-runoff can be partitioned into event and pre-event components. As such, we implemented this
framework to evaluate competing hypotheses of hydrological response against observed Q and tracer
data to select the best model structure for the given hydrological system [26,69,70].

TRaSPAN is composed of three modules (Table 1). Module 1: The effective rainfall module is a
non-linear routine that computes the effective rainfall (Peff) as the product of precipitation (P) and the
antecedent rainfall index (s) [71] (Equations (1) and (2) in Table 1). Module 2: The event and pre-event
routing module defines the fraction Peff routed as either event or pre-event water. Module 3: The Event
and pre-event transfer functions module includes the TTDs to convolve the fractions of event and pre-event
water and, thus, represents the internal hydrological behavior of the system. Modules 2 and 3 are
flexible, allowing for the fraction (f ) of Peff routed as event water to be constant or time-variant (i.e., to
vary over the duration of the event; Equation (3) in Table 1) and for the incorporation of TTDs of
varying degrees of complexity into the convolution integrals for event ant pre-event water (Equations
(4) and (5)). Even though there exists a variety of theoretical TTDs that could represent tracer mixing
in hydrological models, we selected two of the most commonly applied TTDs that have been tested
to represent hydrological systems in other catchments [27,72,73]. These are the exponential model
(EM; [74]) representing a single linear reservoir (Equations (6) and (7) in Table 1) and the two-parallel
linear reservoirs model (TPLR; [27]) representing two connected linear reservoirs (Equations (9) and
(10) in Table 1). A detailed description of the model framework and its modules can be found in
Segura et al. [25]. We also allowed the tracer signal to vary 10% around the concentration measured
before the event to account for the uncertainty in pre-event water composition.

The fractions of event and pre-event water are routed according to the given TTD for he(τ) and
hp(τ) (Table 1, Figure 2) and the resulting event (Qe) and pre-event (Qp) fractions are used to calculate
the tracer concentration based on a mass balance approach (Equation (8), Table 1). Total discharge (Qt)
is the sum of event and pre-event water plus the baseflow (Qb), which was subtracted from the input
data prior to the modelling. We defined Qb as the discharge prior to the beginning of the rainfall event.
All the parameters in the model were estimated by the simultaneous calibration of the streamflow and
tracer data [25].

We explored four TraSPAN model structures of varying complexity depending on the treatment
of the fraction of Peff routed as event water and the number of reservoirs used to route the event
and pre-event water fractions (Figure 2). The number of parameters fitted in each of the four model
structures varied between 7 and 12 (Table 1). Structure 1 had a constant fraction f of Peff routed as
event water and a single reservoir for each of the event and pre-event water components (seven
parameters). Structure 2 also had a constant fraction f, but two reservoirs in parallel for routing the
event and pre-event water components (11 parameters). Structure 3 had a time-variant fraction f (t)
of Peff routed as event and pre-event water and a single reservoir for each of the event and pre-event
water components (8 parameters). Structure 4 also had a time-variant fraction f (t), but two reservoirs
in parallel for each of the event and pre-event water components (12 parameters). For all the model
structures, Q, δ18O, and EC data were computed every 15 min.
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Table 1. Modules, equations, and parameters of the four Tracer-Based Streamflow Partitioning Analysis (TraSPAN) model structures.

Module Parameters and Equations Units
Model Structure

1 2 3 4

1 a

Peff
Initial antecedent rainfall index, So - X X X X

Memory timescale parameter, w time steps d X X X X

Equations
Pe f f (t) = p(t)s(t) (1)

s(t) = c·p(t)− s(t − ∆t)
(

1 − 1
w

)
(2)

where p is precipitation and c is the normalization constant to maintain
∑ Pe f f = ∑ Q

2 b

f, constant Fraction of effective rainfall routed as event water, f - X X

f, variable
Normalization constant, cf 15-min/mm X X

Memory timescale parameter, wf time steps d X X

Equations f (t) = c f ·p(t)− f (t − ∆t)
(

1 − 1
w f

)
(3)
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Table 1. Cont.

Module Parameters and Equations Units
Model Structure

1 2 3 4

3 c

Single Reservoir

Mean transit time of event water, ke h X X
Time delay for the event fraction response, elag h X X

Mean transit time of pre-event water kp h X X
Time delay for the pre-event fraction response, plag h X X

Equations

Qe(t) =
∫ t

0 he(τ)Pe f f (t − τ) f (t − τ)dτ (4)
Qp(t) =

∫ t
0 hp(τ)Pe f f (t − τ)[1 − f (t − τ)]dτ (5)

he(τ) = elag − 1
ke

exp
(

τ
ke

)
(6)

hp(τ) = plag − 1
kp

exp
(

τ
kp

)
(7)

Ct(t) =
Qe(t) Ce+Qp(t) Cp

Qe+Qb
(8)

where Ce is the tracer composition of event water (rainfall) and Cp is the tracer
composition in pre-event water (e.g., baseflow prior to the rainstorm).

Two Parallel
Reservoirs

Fraction of water routed into the fast-responding reservoir of event water, qe - X X
Mean transit time of the fast fraction of event water, kfe h X X

Mean transit time of the slow fraction of event water, kse h X X
Time delay for the event fraction response, elag h

Fraction of water routed into the fast-responding reservoir of pre-event water, qp - X X
Mean transit time of the fast fraction of pre-event water, kfp h X X

Mean transit time of the slow fraction of pre-event water, kse h X X
Time delay for the pre-event fraction response, plag h X X

Equations
he(τ) = − qe

k f e
exp

(
− τ−elag

k f e

)
+

1−qe
kse

exp
(

τ−elag
kse

)
(9)

hp(τ) = qp
k f p

exp
(
− τ−plag

k f p

)
+

1−qp
ksp

exp
(

τ−plag
ksp

)
(10)

Equations (4), (5) and (8) are also used here.

Total number of parameters 7 11 8 12
a Module 1: Effective rainfall module; b Module 2: Event and pre-event routing module; c Module 3: Event and pre-event transfer functions module; d 15 min time steps.
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Figure 2. Assumptions in TRaSPAN model structures (a) constant fraction of effective precipitation
(Peff) routed as event water and a single reservoir for the event and pre-event runoff components
(structure 1); (b) constant fraction of Peff routed as event water and two reservoirs in parallel for the
event and pre-event runoff components (structure 2); (c) time-variable fraction of Peff routed as event
water and a single reservoir for the event and pre-event runoff components (structure 3); and (d) the
time-variable fraction of Peff routed as event water and two reservoirs in parallel for the event and
pre-event runoff components (structure 4).

2.6. Model Simulations, Performance, and Uncertainty

Initially, we ran each of the model structures per tracer 80 million times within a broad range
of Monte Carlo-generated parameter values from uniform distributions (Table 2). We used the
Nash-Sutcliffe efficiency (NSE) coefficient [75] during the calibration always considering the average
NSE for the fits of Q and either δ18O or EC. In order to improve the identification of parameters we ran
each model structure 20 million additional times using a narrower range of parameters corresponding
to those that yielded an NSE of at least 80% of the maximum NSE during the first run. Given that
structure 4 had a larger number of calibrated parameters, we conducted a third model run for 10 million
additional times considering the values of the parameters that yielded NSE values of at least 90% of
the maximum NSE of the second run as initial parameter ranges [76].

Overall model performance was evaluated using the NSE as a measure of goodness of fit, and the
Akaike information criterion (AIC) [77]—using the χ2 statistic as the likelihood [78]—as a measure
of model parsimoniousness. This was necessary considering the different number of parameters
of the considered model structures (Table 1). We considered the sum of AICs for the Q and tracer
data. Given that the χ2 test requires the uncertainty in the observations, we quantified it for Q, δ18O,
and EC. The uncertainty in the discharge was calculated as the sum of the uncertainty associated with
the stage measurements and the uncertainty associated with the rating curve. The stage uncertainty
was estimated to be less than 1.2 mm considering both the instrumentation precision and observed
bias. We assessed the uncertainty in the rating curve by conducting 10,000 Monte Carlo simulations,
in which its parameters were randomly varied. This uncertainty varied between 0.9% and 4.31% with
an average of 3.2%. The total Q resulting uncertainty for our monitored storm varied between 2% and
14%. The uncertainty in δ18O was estimated to be 0.03‰ (Section 3.4) and the uncertainty in EC was
assumed to be 5%, considering the precision of the instrument.
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Table 2. Parameter sets that yielded the highest NSEs values for each TraSPAN model structure and tracer used for calibration.

Model
Structure

Tracer
Module1 Module 2 Module 3

So w f cf wf ke (h) elag (h) kp (h) Plag (h) qe kfe (h) kse (h) qp kfp (h) ksp (h)

1 δ18O Min 0.00 1.00 0.17 15.06 0.00 13.98 0.00
Max 1.00 400.00 0.33 55.84 5.75 74.26 3.75
Best 0.99 4.03 0.28 28.18 0.25 34.07 0.00

EC Min 0.00 11.03 0.16 15.96 0.00 12.67 0.00
Max 0.75 399.98 0.24 50.53 3.75 49.47 2.75
Best 0.01 390.44 0.20 21.19 0.25 19.64 0.25

2 δ18O Min 0.00 1.00 0.15 0.00 0.00 0.00 0.03 16.24 0.00 0.03 6.31
Max 1.00 400.00 0.37 6.00 4.50 1.00 49.87 250.0 1.00 49.99 250.0
Best 0.65 6.60 0.25 0.75 0.25 0.66 16.66 128.7 0.15 6.35 47.23

EC Min 0.00 1.09 0.13 0.00 0.00 0.00 0.25 17.82 0.00 0.11 5.75
Max 1.00 400.00 0.27 5.25 4.25 1.00 47.78 250.0 1.00 46.99 250.0
Best 0.01 190.67 0.19 0.75 1.00 0.69 6.18 122.1 0.66 4.89 208.8

3 δ18O Min 0.00 1.00 0.01 1.01 17.83 0.00 18.23 0.00
Max 1.00 39.99 0.19 39.99 43.40 2.00 72.50 3.75
Best 0.08 24.90 0.02 21.33 26.10 0.00 30.61 0.00

EC Min 0.00 1.00 0.01 1.00 22.80 0.00 17.50 0.00
Max 1.00 40.00 0.15 40.00 64.50 6.50 64.84 3.25
Best 0.75 2.50 0.02 12.45 37.63 0.25 35.53 0.25

4 δ18O Min 0.00 1.02 0.01 1.23 0.00 0.00 0.06 1.06 22.9 0.02 1.25 20.77
Max 1.00 39.98 0.14 39.99 2.25 3.25 1.00 31.30 249.8 1.00 49.54 250.0
Best 0.31 39.63 0.01 34.95 1.00 0.50 0.48 6.24 45.00 0.31 6.57 44.26

EC Min 0.00 1.01 0.01 1.00 0.00 0.00 0.00 0.24 27.2 0.00 0.04 13.60
Max 1.00 40.00 0.16 39.98 3.25 3.00 1.00 49.95 250.0 1.00 38.49 249.9
Best 0.11 21.03 0.01 32.75 0.00 0.00 0.63 20.62 140.6 0.27 3.84 59.94
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We evaluated the uncertainty in the model parameters based on the results of their last run using
a threshold of behavioral solutions. This threshold of behavioral solutions was set up to include
parameter sets that yielded NSEs above 0.70 (for model structures 1 and 3) and above 0.75 (for model
structures 2 and 4). In all cases, there were >5000 behavioral sets. The difference in threshold results
from the larger number of simulations for models 1 and 3 that would have been required in order to
get 5000 parameter sets with NSE > 0.75.

2.7. Comparison of Model Simulations for δ18O and EC

Once the model structure that best simulated the observed Q and tracer data when calibrated
for both tracers (δ18O and EC) was selected, we compared the results in terms of their capability to
simulate the Q and tracer data observations, their distribution and ranges of behavioral parameters,
and their TTDs. The TTD comparison, which provides information about the mixing and transport
processes within the hydrological system, allowed for a direct comparison of the hydrological behavior
determined by the model structures using each tracer.

3. Results

3.1. Hydrometric and Tracer Characterization

The monitored rainfall-runoff event lasted for 10 days and 6.5 h (t0 − tf in Figure 3a). During this
period, total precipitation (in the form of rain; P) and total runoff (Q) reached 155.1 mm and 20.6 mm,
respectively. These values corresponded to a runoff coefficient (Q/P) of 0.13. During the first 44.5 h
(t0 − t1), total P was 19.9 mm with a mean intensity of 0.45 mm h−1. This period was characterized
by little response in the hydrograph. Subsequently (t1 − t2), Q started to increase in response to P
inputs of higher intensity (0.95 mm h−1). At t2 (92.5 h since t0) Q reached its maximum after a total P
amount of 107.4 mm. Later (t2 − t3), the recession of the hydrograph started as P intensity decreased to
0.30 mm h−1. Then, at t3, the last Q peak occurred 112 h after the beginning of the event. By this time,
total P was 140.7 mm. Between t3 and the end of the event (tf), P almost completely ceased, and the
hydrograph recession proceeded. During this last period (t3 − tf), total P was 14.4 mm with a mean
intensity of 0.06 mm h−1.
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Figure 3. Temporal variability of the hydrometric and tracer data during the event monitored between
28 October and 7 November 2015 at Mack Creek. (a) Rainfall (P), runoff (Q), and sample collection
times. Vertical dashed lines (t0 − tf) indicate periods described in Section 3.1; (b) δ18O in stream and P;
and (c) electrical conductivity (EC) in stream and P.
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The temporal dynamics of the δ18O and EC signals of P and Q are shown in Figure 3b,c respectively.
The δ18O of P (δ18OP) at to (baseline signal) was the lowest during the event (−10.66 ‰) and started
increasing as P inputs increased (Figure 3b). The δ18OP signal peaked at −3.5‰ in the water sample
collected a few hours before the Q peak at t3. After this time, during the recession of the hydrograph,
the δ18OP decreased to the baseline value in the sample collected at the end of the event (tf). Similarly,
the EC signal in P (ECP) started at a low baseline value of 5.2 µS cm−1, and increased as P inputs
increased (Figure 3c). The ECP peaked at a value of 30 µS cm−1 in the sample collected a few hours
before the highest peak of the hydrograph at t2. After this period, ECP decreased near the baseline
value, and then peaked again (as δ18OP did) in the sample collected before the last Q peak (around t3)
with a value of 11 µS cm−1. Then, ECP decreased to the baseline value during the recession of the Q as
P inputs decreased until the end of the event (tf). The temporal variability in the Q δ18O (δ18OQ) was
smaller (−10.92‰ to −8.3‰; Figure 3b) than the variability observed in δ18OP. The δ18OQ showed a
pattern related to the hydrograph, i.e., δ18OQ increased as Q increased, and vice versa, in response
to the dynamics of P. Similarly, the temporal change of EC in Q (ECQ) was lower (31.8–41.6 µS cm−1;
Figure 3c) than ECP. The ECQ variability was the mirror image of the δ18OQ signal, i.e., when the
δ18OQ signal (and Q) increased, the ECQ signal decreased, and vice versa (the r2 between EC and δ18O.
is 0.69). The Q values of the pre-event water fraction were −10.92‰ for δ18O and 41.0 µS for EC.

3.2. Model Performance

A summary of the parameter values that yielded the highest NSEs and the statistics of the
calibration model performance for the four structures using each tracer are presented in Tables 2 and 3
respectively. In general, all model structures using both tracers yielded strong fits (NSE > 0.79) to
the observed Q and tracer data (Table 3). The highest NSEs were obtained using model structures 2
and 4 (NSE = 0.87) for δ18O and model structure 4 (NSE = 0.90) for EC. Our evaluation of the models
structures’ parsimoniousness showed that the variation of the AIC values for Q (10,747–22,581) was
higher than the variation of the AIC values for the tracers (213–1025) among the different model
structures (Table 3). Even though model structure 4 had the largest number of fitting parameters,
the sum of the AIC values for Q and the tracers (ΣAIC) showed that this model structure yielded the
lowest values for both δ18O (ΣAIC = 12,238) and EC (ΣAIC = 10,992).

Table 3. TraSPAN model performance in terms of the mean Nash-Sutcliffe efficiency (NSE) for discharge
and tracer concentrations and the Akaike Information Criterion for discharge (AICQ) and tracer (AICT,
i.e., δ18O or EC) values.

Tracer Model Structure Pre-Event Fraction (%) NSE AICQ AICT ΣAIC *

δ18O 1 71.7 0.86 20,762 644 21,405
2 76.2 0.87 16,987 514 17,501
3 76.3 0.81 21,563 1025 22,589
4 74.9 0.87 11,390 849 12,238

EC 1 79.6 0.79 20,762 448 21,209
2 79.5 0.86 15,517 379 15,896
3 81.7 0.86 22,581 213 22,793
4 81.0 0.90 10,747 245 10,992

Note: Bold values indicate the best model structure considering NSE or AIC. * ΣAIC = AICQ + AICT.

3.3. Modelled Streamflow Partitioning

The fitted hydrographs using TRaSPAN model structure 1 (Figure 2a) for δ18O and EC (Figure 4a,d)
poorly resembled the temporal dynamics of Q during the monitored event. In general, the model was
not able to reproduce the Q peak responses to P inputs, or the recession limbs of the hydrographs.
This was particularly noticeable during the highest Q peak and rapid recession of the hydrograph on
DOY 305 and by the overestimation (DOY 306–308) and underestimation (DOY 308–311) of Q during
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the recession limb of the hydrograph. Similarly, this model structure poorly reproduced the δ18OQ

and ECQ temporal variability during the event. The structure could not resemble the δ18OQ tracer
signal dynamics at the beginning of the event (DOY 301–303) and the enriched isotopic composition
during the highest Q peak response on DOY 306 (Figure 4b). During the remaining of the event,
the tracer signal was better captured within the uncertainty bands of the simulations. Regarding the
ECQ temporal dynamics, the model simulations were even weaker (Figure 4e). The model poorly
reproduced this tracer’s signal at the beginning of the event (DOY 301–304), during the highest Q peak
response (DOY 305), and during the last part of the event’s recession limb (DOY 311). The pre-event
water fractions estimated using this model structure were 71.7% for δ18O and 79.6% for EC (Table 3)
and the temporal dynamics of the event and pre-event water contributions to total Q are shown in
Figure 4c,f, respectively. These fractions depicted similar overall model results using both tracers.
Our simulations also indicated an over prediction of the pre-event water fraction (i.e., Qe > 100%) at
the beginning of the event with δ18O (DOY 301–302; Figure 4c) and at the first part of the recession
limb (DOY 306–308; Figure 4d) with EC. Similar results were found for model structure 3 (time-variant
fraction of Peff routed as event water and single reservoirs for event and pre-event; Figure 2c). For this
structure, the implementation of the time-variant routine for the fraction of Peff routed as event water
did not improve the simulations of the hydrograph and the temporal variation of the tracers (Figure S2).
The pre-event water fractions estimated using this model structure were 76.3% for δ18O and 81.7% for
EC (Table 3) and the temporal dynamics of the event and pre-event water contributions to total Q were
similar using both tracers (Figure S2c,f).
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The simulation results using TRaSPAN model structure 4 (i.e., the time variant fraction of Peff 
routed as event water and two connected reservoirs for event and pre-event water; Figure 2d) showed 
that this structure better captured the temporal dynamics of Q using both tracers. All peaks (e.g., the 

Figure 4. TraSPAN modelling results of the hydrograph separation using structure 1 with δ18O (a–c)
and electrical conductivity (EC) (d–f) as tracers for calibration. (a, b, d, and e) show the observed (open
markers) and simulated streamflow and tracer data according to at least 100 different sets of parameters
(light blue lines) yielding Nash-Sutcliffe efficiencies (NSEs) above 0.70 (behavioral parameter sets).
The simulated times series with the set of parameters that yielded the highest NSEs are depicted in
dark blue lines in all cases. (c and f) present the pre-event water (gray shaded area) and the event water
(unshaded area) contributions during the storm corresponding to the set of parameters yielding the
highest NSEs.

The simulation results using TRaSPAN model structure 4 (i.e., the time variant fraction of Peff
routed as event water and two connected reservoirs for event and pre-event water; Figure 2d) showed
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that this structure better captured the temporal dynamics of Q using both tracers. All peaks (e.g., the
highest peak produced on DOY 305) and the recession (DOY 306–311) of the hydrograph were well
simulated by this model structure using δ18O (Figure 5a) and EC (Figure 5d). Similarly, the temporal
dynamics of the tracers’ signal were well simulated by this model structure. Even though this model
structure underestimated the δ18OQ enrichment (Figure 5b) and overestimated the decrease in ECQ

(Figure 5e) on DOY 304; the most enriched δ18OQ and the lowest ECQ peak values (DOY 305), as well
as the rest of the tracer dynamics, fitted the observed data well. The estimated proportions of pre-event
water were 74.9% using δ18O and 81% using EC (Table 3). The temporal variability of the pre-event
water contributions were similar using δ18O (Figure 5c) and EC (Figure 5f) and showed a dominance
of pre-event water contributions, even during the peak Q generation.

Even though structure 2 (i.e., the constant fraction of Peff routed as event water and two connected
reservoirs for event and pre-event; Figure 2b), simulated the hydrograph better than structures 1
and 3 using both tracers (e.g., it captured the Q peaks better), it still had issues simulating the peak
hydrograph response compared to structure 4, particularly when calibrated using δ18O (Figure S1a,b).
Structure 2 also had issues replicating the δ18OQ (Figure S1c) and ECQ (Figure S1d), particularly when
calibrated using EC during the rising limb of the hydrograph. The pre-event water fractions estimated
using this model structure were 76.2% for δ18O and 79.5% for EC (Table 3). However, in contrast to all
of the other model structures, the temporal dynamics of the event and pre-event water contributions
to total Q were different using both tracers. This structure tended to estimate lower pre-event water
contributions during the rising limb of the hydrograph and higher pre-event water contributions
during the recession when calibrated using δ18O (Figure S1c). An opposite trend was observed when
calibrated for EC (Figure S1f).
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Figure 5. TraSPAN model results of the hydrograph separation using structure 4 calibrated with δ18O
(a–c) and electrical conductivity (EC) (d–f) as tracers. (a, b, d, and e) present observed (open markers)
and simulated streamflow and tracer data according to all parameter sets (blue lines) that yield a
Nash-Sutcliffe coefficient above 0.75 (behavioral parameter sets). The best simulated times series in
both cases are depicted in dark blue lines. (c and f) present the pre-event water (gray area) and the
event water (white area) contributions during the storm, according to the best set of parameters.
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3.4. Model Parameter Identification for the Best Model Structure

According to the dotty plots (i.e., values of the NSE as a function of the calibrated parameters
for a given model run), seven of the 12 parameters of model structure 4 using EC for calibration
reached a single peak in the parameter space yielding the highest NSE (Figure 6). These parameters
were: the normalization constant (cf = 0.01; Figure 6c; Table 2) of module 2 and the fraction of water
routed into the fast-responding reservoir of event water (qe = 0.63; Figure 6e), the mean transit time
(MTT) of the fast fraction of event water (kfe = 20.62 h; Figure 6f), the time delay for the event fraction
response (elag = 0 h; Figure 6h), the fraction of water routed into the fast-responding reservoir of
pre-event water (qp = 0.27; Figure 6i), and the MTT of the fast fraction of pre-event water (kfp = 3.84 h;
Figure 6j), and the time delay for the pre-event fraction response (plag = 0 h; Figure 6l) of module 3.
Both parameters of module 1 (So; Figure 6a and w; Figure 6b), the memory timescale parameter (wf)
of module 2 (Figure 6d), and the slow fractions of event (kse; Figure 6g) and pre-event (ksp; Figure 6k)
water of module 3 showed equifinality [79]. That is, these parameters did not reach a single peak
associated to the highest NSE in their parameter space distributions. The distributions of the model
parameters for model structure 4 calibrated using δ18O was similar (Figure S9) and the ranges of
calibrated parameters using both tracers were in strong agreement (Figure 7).
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Similar results were found for model structure 2 using EC for calibration. For this structure,
the module 3 parameters qe, kfe, elag, qp, kfp, and plag, as well as the constant fraction of effective rainfall
routed as event water parameter f (module 2) reached a single peak in the parameter space yielding
the highest NSE (i.e., seven out of 11 parameters; Figure S6). However, even tough for the same model
structure calibrated using δ18O, the parameters qp and kfp did not reach a single peak in the parameter
space (i.e., only five out of 11 parameters did; Figure S5), the ranges of calibrated parameters using
both tracers were in agreement (Figure S11).



Water 2018, 10, 904 15 of 23
Water 2018, 10, x FOR PEER REVIEW  15 of 23 

 

 
Figure 7. Box plots of the calibrated parameters considering sets that yielded NSE > 0.75 from the last 
run (i.e., 1 × 107 simulations) using model structure 4 calibrated for δ18O and electrical conductivity 
(EC) data. Parameter names are shown in Table 1. 

For model structure 1 calibrated using EC, none of the parameters of module 1 reached a single 
peak in the parameter space, whereas the parameters f (module 2), and ke, elag, kp, and plag (module 3) 
did (i.e., five out of seven parameters; Figure S4). The calibration of structure 1 using δ18O, showed 
that the parameter w (module 1) reached a single peak in the parameter space in addition to those 
that did for the model calibrated for EC (i.e., six out of seven parameters; Figure S3). Similarly, the 
ranges of the calibrated parameters for both tracers were not in agreement (Figure S10). For model 
structure 3 calibrated using EC, only the cf parameter (module 2), and the ke, kp, and elag parameters 
(module 3) reached a single peak in the parameter space (i.e., four out of eight parameters; Figure 
S8). The same parameters reach a single peak in the parameter space when structure 3 was calibrated 
using δ18O (Figure S7) and the ranges of calibrated parameters using both tracers were in agreement 
(Figure S12). 

3.5. Comparison of Model Results for Both Tracers 

Even though the TTDs of the event fractions using both tracers were similar for transit times (τ) 
longer than 20 h (Figure 8), there was some discrepancy in the τ distributions shorter than 20 h. For 
shorter τ, the calibration with δ18O yielded a TTD with a predominance of shorter τ in comparison to 
the calibration of the model calibrated with EC (Figure 8a). The shape of the TTDs of the pre-event 
water fractions (Figure 8b) were opposite to those of the event water fraction. That is, for shorter 
MTTs (<10 h), there was a predominance of shorter MTTs for the calibration with EC compared to 
the calibration with δ18O. 

Figure 7. Box plots of the calibrated parameters considering sets that yielded NSE > 0.75 from the last
run (i.e., 1 × 107 simulations) using model structure 4 calibrated for δ18O and electrical conductivity
(EC) data. Parameter names are shown in Table 1.

For model structure 1 calibrated using EC, none of the parameters of module 1 reached a single
peak in the parameter space, whereas the parameters f (module 2), and ke, elag, kp, and plag (module 3)
did (i.e., five out of seven parameters; Figure S4). The calibration of structure 1 using δ18O, showed
that the parameter w (module 1) reached a single peak in the parameter space in addition to those that
did for the model calibrated for EC (i.e., six out of seven parameters; Figure S3). Similarly, the ranges
of the calibrated parameters for both tracers were not in agreement (Figure S10). For model structure 3
calibrated using EC, only the cf parameter (module 2), and the ke, kp, and elag parameters (module 3)
reached a single peak in the parameter space (i.e., four out of eight parameters; Figure S8). The same
parameters reach a single peak in the parameter space when structure 3 was calibrated using δ18O
(Figure S7) and the ranges of calibrated parameters using both tracers were in agreement (Figure S12).

3.5. Comparison of Model Results for Both Tracers

Even though the TTDs of the event fractions using both tracers were similar for transit times
(τ) longer than 20 h (Figure 8), there was some discrepancy in the τ distributions shorter than 20 h.
For shorter τ, the calibration with δ18O yielded a TTD with a predominance of shorter τ in comparison
to the calibration of the model calibrated with EC (Figure 8a). The shape of the TTDs of the pre-event
water fractions (Figure 8b) were opposite to those of the event water fraction. That is, for shorter
MTTs (<10 h), there was a predominance of shorter MTTs for the calibration with EC compared to the
calibration with δ18O.
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4. Discussion

4.1. Selection of the Best Model Structure Using Water Isotopes and Electrical Conductivity for Model Calibration

The various TraSPAN model structures can be used to test different hypothesis about the processes
that control streamflow generation [69,70] or as a rejectionist framework to improve knowledge about
the hydrological behavior of a given catchment [26]. Thus, the modeler can hypothesize and test
different hydrological behaviors and assumptions in a catchment by building and testing conceptual
models that represent different catchment functions [80,81].

In our study, the four tested model structures (i.e., competing hypotheses [82,83]) provided strong
fits in terms of the NSE objective function using both tracers for calibration (NSEs > 0.79; Table 3).
However, further evaluation of the models’ parsimoniousness, depicted important differences among
the evaluated structures (Table 3). The simplest TraSPAN structures, including a single reservoir for
the event and pre-event water transit times assuming either constant (structure 1 with 7 parameters;
Figure 2a) or a time variant (structure 3 with 8 parameters; Figure 2c) fraction of Peff routed as event
water, provided less parsimonious results than the more complex structures 2 and 4. Between structures
2 and 4, which represented the catchment response with two connected linear reservoirs for each the
event and pre-event water fractions and a constant (structure 2 with 11 parameters; Figure 2b) or time
variant (structure 4 with 12 parameters; Figure 2d) fraction of Peff routed as event water; structure 4
was the most parsimonious to represent the internal catchment response using both tracers (Table 3).

Regarding the results of the simulations of the observed Q and tracer data, the simplest structures
1 and 3 poorly resembled the hydrograph. These structures did not reproduce the peak responses and
the recessions that followed them (DOY 306–311; Figure 4a,d, Figure S2a,d). Regarding the simulation
of the tracer dynamics, these structures captured relatively well the δ18OQ decrease and ECQ increase
during the hydrograph falling limb but poorly resembled the tracer dynamics at the beginning of the
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event (Figure 4b,e, Figure S2b,e). These results indicate that the hydrological behavior of Mack Creek
is not well represented when a single reservoir is used to route the event and pre-event water fractions
regardless of the treatment of the Peff as constant or time variant. On the other hand, structures 2
and 4 provided better representations of the hydrograph and the tracers’ dynamics. Both of these
structures calibrated with both tracers were able to better resemble the highest Q peak (DOY 305) and
the following rapid recession (Figure 5a,d, Figure S1a,d). These results suggest that the Mack Creek
hydrological system is better represented by two connected linear reservoirs for each the event and
pre-event water fractions. Regarding the tracer dynamics, structure 4 provided the best fits of the
tracer data in comparison with structure 2 for both tracers (Figure 5b,e, Figure S1b,e). These results
indicate that the system is not only better represented by two connected reservoirs, but that the internal
mixing of the tracer is better represented when the Peff routed as event water is treated as time-variant
(structure 4) than when it is treated as constant (structure 2). Even though not directly investigated
at Mack Creek evidence of non-stationary flow conditions and tracer dynamics have been shown for
WS10, a 0.1 km2 catchment located near the outlet of the H.J. Andrews Forest (Figure 1) [63,84,85].

4.2. Comparison of Flow Partitioning Modelling Results Calibrated for Water Isotopes and Electrical Conductivity

The ranges of the calibrated parameters for TraSPAN structure 4 were remarkably similar using
both WSI and EC for calibration (Figures 6 and 7, and Figure S9, and Table 2). In addition, the temporal
variation (Figure 5c,f) and the estimated proportions of pre-event water yielded by the model calibrated
for each tracer were in agreement (74.9% for δ18O and 81.0% for EC, Table 3). Even though previous
hydrograph separation investigations using simple tracer mixing models have found contradictory
results regarding the reliability of the event and pre-event water contributions when EC is used as a
tracer due to its non-conservative nature [16,18,48,50,51,53,86–88], our findings suggest that this issue
could be related to the lack of simultaneous representation of the water flow transport in addition
to the tracer mixing within a given hydrological system. We were able to account for both using our
TraSPAN numerical modeling approach.

Similar findings were reported by Mosquera et al. [76] in a study conducted to evaluate the
baseflow transit times in a nested system of tropical alpine (páramo) catchments in South America.
These authors found that the spatial variability of transit time estimates for their nested system of
catchments—based on the calibration of a lumped conceptual model using δ18O—was highly correlated
with the catchments’ mean yearly baseflow EC (r2 = 0.89) and suggested that average EC values could
be used as an inexpensive proxy to estimate baseflow transit times. Even though these results cannot
be generalized until additional investigations are carried out in different environments, the results from
Mosquera et al. [76] and our study highlight the potential advantages of high-resolution monitoring of
EC for hydrological modelling applications, particularly when flow dynamics are accounted for.

4.3. On the Use of High-Temporal Resolution EC in Hydrograph Separation Modelling

It is worth noting that the structure 4 simulation results yielded better model performance,
both in terms of goodness of fit and parsimoniousness, when calibrated with the finer temporal
resolution of EC data than when calibrated for δ18O (Table 3). The simulation results also showed that
a higher accuracy to represent the hydrograph and tracer dynamics was obtained when structure 4
was calibrated using the higher-resolution EC data (sub-hourly), than when calibrated for WSI data
collected every 4 h. For instance, the hydrograph highest peak and following recession on DOY 305
(Figure 5a,c) and the rapid δ18O increase/EC decrease on DOY 304–305 (Figure 5b,d) were better
represented by the model calibrated using EC data. These results indicate that even though the
model calibrated for both tracers depicted similar hydrological behavior (see Section 4.4 for details),
the calibration for the higher-resolution EC data allowed better capturing of the fast occurrence of flow
transport and solute mixing processes. These simulations resulted in the release of higher amounts of
pre-event water for the model calibrated for EC (81%), particularly during the highest hydrograph
peak on DOY 305 (Figure 5f), with respect to the calibration for δ18O (75%; Figure 5c).
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Other investigations have also reported higher accuracy to represent the temporal variability of
the tracer’s signal, and further interpretation of water routing in hydrological systems when using
high-temporal resolution tracer data [89,90]. Our results do not only support the findings from these
authors, but also demonstrate the potential of the inexpensive collection of EC data at high-temporal
resolution to improve understanding of fast occurring (seconds to minutes) hydrological processes.

4.4. Process-Based Understanding of Hydrological Behavior

We evaluated the similarity in hydrological behavior of the transport and mixing of water within
the Mack Creek catchment based on the shapes of TTDs provided by the best model structure calibrated
for each tracer. Despite the overall similarities of the TTDs’ shapes for both tracers (Figure 8) with
dominance of long transit times (τ > 10 h), our results showed small differences for shorter transit
times (τ < 20 h for the event water fractions, Figure 8a; τ < 10 h for the pre-event water fractions,
Figure 8b). This discrepancy could be related to different temporal resolution of the data used for
calibration, as reported in other studies [89]. In other words, the use of finer temporal resolution EC
data (every 0.25 h) in comparison to the WSI data (every 4 h).

From a process-based perspective, the TTDs obtained from the model calibration using both
tracers indicate that the catchment acts as a connected system of two water reservoirs each with a
fast and a slow transit function contributing large amounts of pre-event water (75–81%) to discharge
(Table 3). These two reservoirs likely represent: (1) fast event and pre-event water moving through
the shallow permeable soils and (2) slow event and pre-event water moving through the fractured
parent material (hereafter referred to as the groundwater reservoir, GW). That is, this catchment has
poorly developed gravelly loam soils with high infiltration rates (>500 cm h−1) that are overlaying
highly weathered and fractured bedrock [57]. Baseflow MTT at Mack Creek was estimated around
2 ± 0.49 years, i.e., one of the longest within the H.J. Andrews catchments [57]. This MTT estimation
indicates that water is likely stored in the GW reservoir, as has been observed in other headwater
catchments with relatively permeable geology (e.g., [73,91,92]). Stored water that can be released
rapidly to streams during rainfall events given the connectivity between hillslopes and riparian areas.
Such connectivity has been observed near our study area at WS10 (Figure 1) [63]. Additionally, even
though high amounts of pre-event water were released as streamflow during the monitored event,
the total runoff (20.6 mm) accounted for only 13% of the total precipitation input (155.1 mm). Again,
given the permeable soils and fractured bedrock of the catchment, and the dry antecedent moisture
conditions during the monitoring period (28 October–7 November)—which corresponded to the
beginning of the fall season after the summer period in the particularly dry water year 2015—only
a small fraction of total precipitation was converted into Peff. These results from the hydrometric
analysis indicate that the rest of water inputs must have filled the initially low water storage of the
GW reservoir after the dry summer. In this context, the strong goodness of fit of our model to simulate
the high temporal variability of the streamflow and tracer data dynamics (Figure 5a–d) indicates that
through the simultaneous calibration of water and solute fluxes, our model was not only capable to
successfully account for the water flux and tracer mixing dynamics, but also for the recharge of water
in the groundwater system.

5. Concluding Remarks and Future Directions

Our evaluation of a tracer-based hydrological model (TraSPAN) demonstrated that the assessment
of different modeling structures—each representing a different rainfall-runoff response—allowed for
a better identification of the hydrological system functioning. For our analyzed rainfall event at the
H.J. Andrews experimental forest, we found that the same model structure was best at representing
hydrographic and tracer dynamics using either electrical conductivity/specific conductance (EC) or
water-stable isotopes (WSIs) collected at high temporal resolution for calibration. The model results
using both tracers not only showed a remarkable agreement to fit the observed data and the calibrated
parameter distributions, but also in terms of the process-based understanding of the hydrological
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system. Moreover, the use of sub-hourly (0.25 h) collected EC data also allowed to better simulate
the catchment hydrological response in comparison to the 4 h δ18O data. These findings highlight the
potential of using low-cost EC data collected at high temporal resolution in combination with a flexible
hydrological modelling framework to better understand catchment hydrological behavior.

Despite the advantages of our applied methodology, we acknowledge that before the widespread
application of our approach, future research should focus on understanding site-dependent
geochemical conditions under which the applicability of EC as a conservative tracer is suitable.
Future research should also focus on implementing monitoring strategies that allow for the combined
collection of water isotopes and geochemical data at the highest possible temporal resolution during
a variety of climatic conditions (i.e., wet, transition, and dry periods). We encourage such efforts,
as these data would provide information about the spatial and temporal variability in weathering rates
to better establish the conditions under which the use of high-resolution EC observations would yield
robust datasets to investigate important, but yet unresolved, questions in catchment hydrology that
require the identification of fast-occurring hydrological processes, while reducing monitoring costs
and the degree of uncertainty in simulated flow components.
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