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Intfroduction The isotope concentrations were analyzed in terms of elevation lapse
rates, spatial variability, and the relative contribution of main tributaries.
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Spatial Variability

Understanding the spatiotemporal patterns of streamflow generation and
their relationships with catchment characteristics remains one of the key
challenges in the prediction of hydrologic behavior.

* We predicted isoscapes using Spatial Stream Network Models [3,4]

. McRae: Low variability in 6120 & %H
considering landscape and local processes.

in 2015 and exponential increases

* Previous research has focused primarily on the prediction of storm events Results in 2016.
whereas much less attention has been given to baseflow conditions.
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Lookout: Evidence for the isotopic
control of Cold Creek. The inflection
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* Base flow is critical to the flow generation between events and during dry g (9.1-64.12)
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Fig. 3. Lapse rates for 6180 by tributary and sampling campaign.

Geology

Ridge-capping lava (Sardine Formation) _ L5 '

Fig. 6. Best linear model to predict 6130 (2016-06) based on elevation, geology, roughness, and slope a) and
best SSN model b). Panel c) presents Isoscapes for 2015 and 2016-06 (colored triangles are observations).
Both SSN models (R2>0.85) include roughness as a covariate.

 Weaker relations in 2015 (drought conditions) compared to 2016.
* The relations for Lookout below Cold Creek are consistently strong.

Ridge-capping lava (Pliocene)

Ash-flow tuff (Sardine Formation)

Altered pyroclastics

Conclusions

Fig. 1. Location and Geology of the H.J. Andrews Experimental Forest.

Methods

 We collected 607 grab samples over the network during 3 campaigns (Sep,
2015, June 2016, and Aug 2016).

 The 3 campaigns represent different moisture levels. Mean discharge in
Lookout Creek, was 2.2 m3/s (7t lowest) in 2015 and 3 m3/s (19 lowest) in
2016 (considering a 59 yr record).
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e Strong differences in isotopic concentrations were detected between McRae
and Lookout creeks.

e |[sotopic lapse rates in 2015 were weak indicating stronger dependency on
local storage than atmospheric inputs.

e Cold Creek, which occupies 4.5% of the basin, provides a remarkably high
water contribution to downstream flow.

e |[soscapes were well predicted by the Spatial Stream Network Models based

on local roughness revealing dramatic differences between 2015 and 2016.
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Fig. 4. Relative contribution of Cold Creek to Upper Lookout (a), and of upper lookout to Lookout
before (b) and after (c) the confluence with McRae

A two-end member-mixing model indicated that the contribution of Cold
Creek to the total discharge between its confluence and Mack Creek varies
between 41-94%.

The contribution of Upper Lookout to Lookout between Mack and McRae
varies between 54-62%, whereas below McRae Creek is above 95%.

 Composite precipitation samples were collected ~twice a month between
2014 and 2016 at 2 locations (430 and 922 m.a.s.l.)
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