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Abstract

Large-scale disturbances such as wildfire can have profound impacts on the

composition, structure, and functioning of ecosystems. Bees are critical polli-

nators in natural settings and often respond positively to wildfires, particularly

in forests where wildfire leads to more open conditions and increased floral

resources. The use of Light Detection and Ranging (LiDAR) provides oppor-

tunities for quantifying habitat features across large spatial scales and is

increasingly available to scientists and land managers for post-fire habitat

assessment. We evaluated the extent to which LiDAR-derived forest structure

measurements can predict forest bee communities after a large, mixed-severity

fire. We hypothesized that LiDAR measurements linked to post-fire forest

structure would improve our ability to predict bee abundance and species

richness when compared to satellite-based maps of burn severity. To test this

hypothesis, we sampled wild bee communities within the Douglas Fire Com-

plex in southwestern Oregon, USA. We then used LiDAR and Landsat data

to quantify forest structure and burn severity, respectively, across bee sam-

pling locations. We found that the LiDAR forest structure model was the best

predictor of abundance, whereas the Landsat burn severity model had better

predictive ability for species richness. Furthermore, the Landsat burn severity

model was better at predicting the presence and species richness of bumble

bees (Bombus spp.), an ecologically distinct and economically important group

within the Pacific Northwest. We posit that the divergent responses of the

two modeling approaches are due to distinct responses by bee taxa to varia-

tion in forest structure as mediated by wildfire, with bumble bees in particu-

lar depending on closed-canopy forest for some portions of their life cycle.

Our study demonstrates that LiDAR data can provide information regarding

the drivers of bee abundance in post-wildfire conifer forest, and that both

remote sensing approaches are useful for predicting components of wild bee

diversity after large-scale wildfire.

Introduction

Insect pollinators play an indispensable role in natural

and managed ecosystems by pollinating [ 85% of the

world’s wild flowering plants (Ollerton et al., 2011) and

35% of agricultural crops (Klein et al., 2007), as well as

providing more than US$260 billion in ecosystem services

annually (Porto et al., 2020). Despite their importance,

long-term pollinator population declines (Goulson

et al., 2015) and ongoing challenges to pollinator health

(Lopez-Uribe et al., 2020; Potts et al., 2010) have led to

widespread concerns about the integrity of natural
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ecosystems and global food security (Allen-Wardell

et al., 1998; Biesmeijer et al., 2006; Potts et al., 2016). In

turn, this has led to heightened interest in evaluating the

response of pollinators to natural and anthropogenic dis-

turbances, especially beyond the agricultural settings in

which most pollinator research has been traditionally con-

ducted. Although a growing body of work has found a

wide range of managed forests support pollinator popula-

tions (Heil & Burkle, 2018; Rivers et al., 2018b; Rivers &

Betts, 2021; Roberts et al., 2017; Taki et al., 2013; Ulyshen

et al., 2023), our understanding of how pollinators

respond to natural disturbances within managed forest

landscapes is nascent and many important questions

remain outstanding (Rivers et al., 2018a).

Bees are considered to be the most important pollina-

tor group in most terrestrial systems (Willmer et al.,

2017), and there is mounting evidence that many species

of wild bee populations respond positively to disturbances

occurring within forest ecosystems (Bogusch et al., 2015;

Burkle et al., 2019; Galbraith et al., 2019a; Roberts

et al., 2017; Taki et al., 2013; Zitomer et al., 2023),

including wildfires (Carbone et al., 2019; Galbraith et al.,

2019a; Mason Jr et al., 2021). Bees play a critical role in

the post-fire structuring of such systems because the polli-

nation services they provide ultimately support the

broader ecological community, and thus, there is height-

ened interest in understanding their response to large-

scale wildfire (Rivers et al., 2018a). Results from this

growing body of work have demonstrated that character-

istics of wildfire, such as burn severity, are often impor-

tant predictors of bee community composition (Galbraith

et al., 2019a; Mason Jr et al., 2021; Ponisio et al., 2016;

Ulyshen et al., 2022).

Burn severity is a measure for fire’s effects on the eco-

system, where high-severity fire removes more fuel and

transfers more heat than low-severity fire (Keeley, 2009).

Although burn severity appears to be a key driver of for-

est bee response to wildfire, few investigations have mea-

sured the impacts of burn severity on this group (Mason

Jr et al., 2021). Of the limited studies on this topic, sev-

eral have provided evidence for a positive relationship

between bee diversity and burn severity, proposing

this relationship is driven by the greater availability of

floral resources in response to a wildfire-induced reduc-

tion in tree canopy, particularly within forests of the

western United States (Galbraith et al., 2019a; Gelles

et al., 2022). However, the response of local bee commu-

nities to burn severity is likely to depend on environ-

mental conditions, such as the local fire regime (Koltz

et al., 2018) and functional traits represented by the local

bee and flower communities (Brown et al., 2017). For

example, moderate severity fires in Mediterranean pine

forests decreased canopy cover enough to promote floral

abundance and augment bee diversity, whereas severe

burns actually reduced critical habitat elements required

by the local bee community (Lazarina et al., 2019). Like

many studies on bees in large-scale forest ecosystems,

however, that study lacked habitat data needed to rigor-

ously test such hypotheses (Lazarina et al., 2019). Under-

standing which habitat variables drive bee response to

burn severity across different systems requires better

tools for measuring habitat at fine resolutions and broad

spatial scales.

Remote sensing offers an increasing array of tools for

measuring these variables. The rapid increase in remote

sensing technology has improved the accessibility and

quality of data used for modeling how organisms are

influenced by environmental factors at large spatial scales

(Nagendra, 2001; Randin et al., 2020), yet bees and other

arthropods are disproportionately underrepresented in

such studies (Galbraith et al., 2015; Leyequien

et al., 2007; Newton et al., 2009). Of the existing insect

research that has employed remotely sensed data, the

great majority of this work has relied on passive remote

sensing tools, most often using satellite imagery to cate-

gorize land cover types (Willcox et al., 2018). These tools

often produce coarse spatial data with insufficient resolu-

tion for capturing relevant changes to insect habitat

(Willcox et al., 2018). Studies examining bee response to

wildfire, for example, have typically used derived mea-

sures that represent an index of ecological change due to

wildfire (Rhodes et al., 2022), such as the amount of

burned area or an index of burn severity. These

indices do not account for forest structure characteristics

that may be driving bee response to burn severity (e.g.,

tree height and basal area) at the resolution needed to

make predictions about habitat quality.

Active remote sensing tools can provide opportunities

for an improved understanding of the fine-scale habitat

changes that are needed to understand the response of

small organisms, including insects, to disturbances (Gal-

braith et al., 2015; Rhodes et al., 2022). One tool in par-

ticular, Light Detecting and Ranging (LiDAR), holds

promise over remotely sensed maps measuring burn

severity because it provides information on vertical struc-

tural components and produces data at a much finer spa-

tial resolution. Previous studies have associated LiDAR-

derived variables with arthropod assemblages, finding that

beetle body size (Müller & Brandl, 2009), beetle species

occurrence (Bombi et al., 2019; Work et al., 2011), but-

terfly species distributions (de Vries et al., 2021), and spi-

der occurrence (Vierling et al., 2011) could be mapped

with varying degrees of accuracy within mature forests.

However, only a single study to date has examined the

relationship between bees and LiDAR-derived variables

(Traylor et al., 2022); that study found that tree
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composition—but not LiDAR-derived forest structure

measurements—was linked to bee communities in south-

eastern US forest sites, perhaps due to a limited range of

structural variation that was examined. However, bee

diversity did show a negative relationship to in situ mea-

surements of tree basal area (Traylor et al., 2022),

highlighting the promise this technique holds for under-

standing how forest bees are influenced by stand struc-

tural components that are expected to be altered by large-

scale wildfire.

In this study, we investigated the use of LiDAR-derived

forest structure variables to predict bee abundance and

bee species richness in a highly heterogeneous post-

wildfire conifer forest landscape. We hypothesized that

models using LiDAR-derived measures of post-fire forest

structure (hereafter; LiDAR forest structure models)

would have better predictive ability for bee abundance

and species richness relative to a commonly used

Landsat-derived burn severity model (hereafter; Landsat

burn severity model), the Relative differenced Normalized

Burn Ratio (RdNBR; Miller & Thode, 2007, Miller

et al., 2009). We also hypothesized that bumble bees

(Bombus spp.), an ecologically and economically impor-

tant group that has been relatively well studied in post-

fire habitats (e.g., Mola & Williams, 2018; Simanonok &

Burkle, 2020), would respond differently than the bee

community as a whole because they are large-bodied and

colonial-nesting (i.e., eusocial) and are therefore expected

to forage over greater distances than other forest bee spe-

cies in the community (Osborne et al., 2008). Although

our previous work found a link between burn severity

and bee abundance and species richness, we posited that

the relationship was likely driven by increased floral

resources in areas where high-severity wildfire removed

more of the forest canopy relative to less severely burned

sites (Galbraith et al., 2019a). As such, we expected that a

model characterizing the structure of the forest after wild-

fire would provide an improved characterization of bee

suitability relative to burn severity, and thus, a post-fire

forest structure model using three-dimensional LiDAR

data would better predict bee abundance and species rich-

ness patterns than a burn severity model from Landsat

data. However, bumble bees show strong growth in col-

ony size in post-wildfire settings (Mola et al., 2020a) and

several species in this group use forests throughout their

life cycle (Mola et al., 2020b; Mola et al., 2021). These

findings led us to predict that the response of bumble

bees to wildfire would be less influenced by forest struc-

ture, and more influenced by burn severity.

Understanding bee responses to wildfire has become par-

ticularly timely and relevant to conservation efforts given the

increase in the extent and severity of wildfire in the western

United States in recent decades (Dennison et al., 2014;

Westerling et al., 2006), and projections that this trend will

continue well into the next century despite limitations on for-

est fuels (Abatzoglou et al., 2021; Flannigan et al., 2013).

Thus, an improved understanding of the specific habitat

changes that drive the influence of wildfire on bee communi-

ties is needed to enhance conservation of bees, both as ele-

ments of biodiversity and for the ecosystem services they

provide within and beyond forest ecosystems (Hanula

et al., 2016; Rivers et al., 2018a; Ulyshen et al., 2023). By

exploring novel applications of tools such as LiDAR to

improve our understanding of the relationship between polli-

nators and wildfire, we will expand our ability to continue

testing these relationships in diverse forest systems.

Materials and Methods

We conducted this study in the [ 19 000 hectare Douglas

Fire Complex, which burned during July–August of 2013 in
the Klamath Mountains of the Klamath–Siskiyou ecoregion

of southwestern Oregon. This area is characterized by a fre-

quent, mixed severity fire regime (Taylor & Skinner, 1998)

and is dominated by conifer tree species such as Douglas-

fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponder-

osa), and Jeffrey pine (Pinus jeffreyi), as well as containing

some hardwood species (e.g., tanoak [Lithocarpus densi-

florus], madrone [Arbutus menziesii]). The Douglas Com-

plex fires resulted in a mosaic of burn severity in the mixed

conifer landscape (Zald & Dunn, 2018) across multiple

landownerships; we focused our study in forests managed

by the U.S. Bureau of Land Management (BLM) within the

burn perimeter, which consisted largely of even-aged

Douglas-fir stands prior to the fire, with some snags and

live trees remaining after harvest.

Site selection

We randomly selected sampling locations within the burn

perimeter to represent the full burn severity gradient of

the Douglas Complex. We chose locations by randomly

generating points within the burn perimeter that centered

on stands encompassing a minimum 6.5 hectares of forest

burned within the same burn severity category (with

RdNBR of \235, 235–649, and [ 649 representing low,

moderate, and high severity categories, respectively; Reilly

et al., 2017). In addition, we selected points that were a

minimum 1 km from other points within the same burn

severity category to reduce spatial autocorrelation of bee

communities.

Bee and habitat sampling

We collected bees at n = 34 sites during four sampling

rounds during May–September 2016 and 2017. We spaced
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sampling rounds by 3–4 weeks to cover the flight seasons

of the regional bee community without having undue

negative impacts on foundress queen bumble bees (Bom-

bus spp.) that are most abundant in late spring. Our earli-

est sampling round (mid-May) coincided with bloom of

early-season plants used by bees in post-fire areas (e.g.,

Vaccinium ovatum, Berberis nervosa), and our final sam-

pling round coincided with declining bloom of the

regional forb community.

During each sampling round and on each stand, we

passively sampled bee communities using two blue vane

traps (BVTs) with no killing agent or preservative. All

sampling methods introduce trade-offs (Prendergast

et al., 2020), so we selected this sampling method because

BVTs are attractive to diverse bee taxa in forested ecosys-

tems (Rhoades et al., 2018; Rivers et al., 2018b; Rivers &

Betts, 2021). In addition, using BVTs allowed us to stan-

dardize sampling across a range of sites that exhibited dif-

ferences in vegetation of the understory and canopy. For

each sampling site, we hung a trap each on two separate

1.8 m tall posts. To avoid placement bias, the first trap

was placed 10 m from the site center along a randomly

selected azimuth and the second trap was placed 10 m

from the center in the opposite direction. We avoided

placing traps in dense vegetation patches to standardize

visibility for bees as much as possible. We placed BVTs

on t-posts located 10 m from the center of the stand

where they remained in place for 48 h, after which we

collected trap contents. Bees were identified to species or,

if species-level keys or named reference specimens were

unavailable, to morphospecies by L. R. Best and A. R.

Moldenke from Oregon State University. A reference col-

lection is held at the Oregon State Arthropod Collection

(Galbraith et al., 2019c). Additional information about

site selection, bee sampling, bee identification, and the

bee community can be found in Galbraith et al. (2019a,

2019b).

Remote sensing data

Burn severity was quantified using the Relative differ-

enced Normalized Burn Ratio (RdNBR), a satellite

imagery-based metric of pre- to post-fire change (Miller

et al., 2009). Cloud-free pre-fire (July 2013) and post-fire

(July 2014) images were sourced from the Landsat 8

Operational Land Imager. As described in Zald and

Dunn (2018), normalized burn ratio (NBR), which com-

bines near-infrared and mid-infrared bands of Landsat

imagery, was calculated for pre- and post-fire images,

then RdNBR calculated as:

RdNBR ¼ RdNBRPre�fire�RdNBRPost�fire
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Absolute value
RdNBRpre�fireð Þ

1000

q

We selected stands that spanned the burn severity gra-

dient based on relationships between RdNBR and basal

area mortality (Reilly et al., 2017; Fig. 1), therefore

accounting for differences in both pre-fire and post-fire

vegetation cover (Miller et al., 2009). The 34 selected

stands fell into four burn severity categories: low (n = 10;

RdNBR mean = 103.53, SD = 46.78), medium–low
(n = 7; RdNBR mean = 326.48, SD = 37.07), medium–
high (n = 8; RdNBR mean = 548.56, SD = 48.73), and

high (n = 9; RdNBR mean = 851.46, SD = 140.21).

The post-fire LiDAR dataset was collected by Quantum

Spatial Inc. (now NV5) in the same fire complex, but

during late summer 2017. This collection period coin-

cided with field bee sampling. Unlike the LANDSAT data,

which correlate with burn severity and therefore required

sampling as close to the date of the wildfire as possible, it

was desirable to have LiDAR data collected as close as

possible to the timing of bee sampling to reflect the forest

habitat conditions at that time. We selected LiDAR-

derived variables from metrics developed by Hoe

et al. (2018), as these variables represent a full suite of

post-wildfire habitat elements. All metrics from point

clouds were processed using the FUSION software

(v. 4.40, http://forsys.cfr.washington.edu/fusion/fusion_

overview.html) at a 900 m2 scale consistent with Landsat

data and then analyzed all remote sensing data layers,

including visual interpretation of the point clouds, in Esri

ArcMap 10.7.1 (Hoe et al., 2018). We then used available

literature to select a subset of 10 LiDAR variables that

were most relevant to pollinator habitat by describing for-

est structure after wildfire (Table 1).

Data analysis

No single scale is likely to be relevant to the diversity of

bee species in our landscape (Galbraith et al., 2019b), as

bee body size is strongly correlated with bee foraging

range (Greenleaf et al., 2007). As such, we measured each

of the 11 landscape variables under consideration

(Table 1) around our sampled stands using five concen-

tric circles with radii of 50, 100, 250, 500, and 1000 m.

We centered each circle on a midpoint between the two

BVT sampling locations (i.e. the stand center) and the

radii were selected based on the typical foraging ranges of

wild bees of a range of body sizes (Zurbuchen

et al., 2010). We then condensed this multiscale informa-

tion for each variable into a single covariate using princi-

pal components analyses (PCA; prcomp function in R

(v. 3.6.3; R Core Team, 2022)). The first principal com-

ponent accounted for most of the cross-scale variance for

each variable (mean = 69% [SD = 5.04], range: 63–78%;

Table 2) and was used to represent the variable in all sub-

sequent analyses. We did this for three reasons: First, it
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Figure 1. Map of the Douglas Complex Fire in southwestern Oregon, United States where the study took place. The panels show the context of

the burn area within the pacific northwestern United States (upper left); and the sampling sites overlaid with the Landsat burn severity data

(upper right), LiDAR canopy cover data (lower left), and LiDAR intensity data (lower right).
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minimized correlation among potential covariates, which

tended to be high among identical variables measured at

different scales; second, it reduced the total number of

covariates being considered for our models while still

accounting for most of the heterogeneity across scales of

biological relevance; and third, it ensured that our covari-

ates contained information that was ecologically relevant

to all species included in our analysis, regardless of the

Table 1. Description of the remotely sensed variables used in the study with justification from previous research on native bees within conifer

forest.

Sensor Variable(s) Description Relevance to bee habitat use

Landsat Relativized

differenced

Normalized Burn

Ratio (RdNBR)

Two-dimensional burn severity metric calculated from

the change in pre- and post-fire surface reflectance

of the near and infrared spectrum

Burn severity is correlated with bee diversity in forest

ecosystems (Galbraith et al., 2019a; Lazarina

et al., 2019)

LiDAR Basal area mortality

(BAM)

Three-dimensional burn severity metric calculated

from the change in proportion of dead stems after

the fire

Burn severity is correlated with bee diversity in forest

ecosystems (Galbraith et al., 2019a; Lazarina

et al., 2019 )

LiDAR Post-wildfire mean

tree height

(Htmean)

Mean vegetation height Proxy for stand age/basal area, which is negatively

related to bee diversity (Rhoades et al., 2018)

LiDAR Post-wildfire cover

(Cover)

Based on returns >2 m Cover includes any returns from anything at this height

of the forest, such as vegetated canopy and snags.

Canopy cover is negatively related to bee diversity

(Grundel et al., 2010; Hanula et al., 2015; Hanula

et al., 2016; Rubene et al., 2015)

LiDAR Post-wildfire

understory

reflectance (CRS1)

Mean reflectance below canopy (<2 m) High values indicate a dense vegetation layer with high

infrared reflectance (e.g., green understory

vegetation) (Hoe et al., 2018). Vegetation in the

understory influences bee abundance and diversity

(Campbell et al., 2007)

LiDAR Post-wildfire canopy

reflectance (CRS3)

Mean reflectance at canopy level (>10 m) High values indicate a dense vegetation layer with high

infrared reflectance (e.g., green vegetation in the sub-

canopy or canopy) (Hoe et al., 2018). Canopy cover is

negatively related to bee diversity (Grundel

et al., 2010; Hanula et al., 2015; Hanula et al., 2016;

Rubene et al., 2015)

LiDAR Post-wildfire mean

intensity (IntMean)

Mean intensity value for all returns Foliar reflectance can improve upon classifications

(Silveyra Gonzalez et al., 2018), and therefore may

discriminate between vegetation and surfaces that

predict bee abundance and richness.

LiDAR Post-wildfire mean

intensity value—
understory (Int1)

Mean intensity value for returns <2 m Foliar reflectance can improve upon classifications

(Silveyra Gonzalez et al., 2018), and therefore may

discriminate between understory vegetation and

surfaces that predict bee abundance and richness

LiDAR Post-wildfire mean

intensity value—
canopy (Int3)

Mean intensity value for returns >10 m Foliar reflectance can improve upon classifications

(Silveyra Gonzalez et al., 2018), and therefore may

discriminate between canopy vegetation and surfaces

that predict bee abundance and richness. Forests

support distinct bee species across strata (Urban-

Mead et al., 2021)

LiDAR Post-wildfire return

proportions—
understory (RP1)

Based on returns <2 m Improves upon burn severity estimates (Hoe

et al., 2018) and a measure of vertical complexity in

herb/shrub layer. Vegetation in the understory

influences bee abundance and diversity (Campbell

et al., 2007)

LiDAR Post-wildfire return

proportions—
canopy (RP3)

Based on returns >10 m Improves upon burn severity estimates (Hoe

et al., 2018) and a measure of vertical complexity.

Shown to be important for some butterfly species (de

Vries et al., 2021)
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scale at which they perceive landscape structure. To fur-

ther minimize the potential for multi-collinearity in our

models, we also examined Pearson’s correlation among

the 10 LiDAR principal components prior to model

building. We found that Cover was highly correlated

(|r| [ 0.74) with all covariates except Int3 and BAM,

and that the latter two were highly correlated (r = �0.79)

with one another. We thus selected Cover and Int3 to use

as the variables in LiDAR models because they repre-

sented most of the variability in the original 10 covariates

of interest.

We compared the performance of Landsat- and

LiDAR-derived variables on four response variables: bee

abundance, bee species richness, presence of Bombus spp.,

and species richness of Bombus spp. Initially, we planned

to examine abundance of all Bombus species, but we were

unable to identify a probability distribution that reason-

ably represented this response variable; thus, we simplified

abundance to a presence/absence measure. Preliminary

data exploration indicated substantial heterogeneity in

number of bees trapped among sampling rounds, so we

conducted analyses at the plot-by-sampling round level.

We used generalized linear mixed models in all analyses

that assumed a negative binomial response distribution

(bee abundance and species richness), a Poisson distribu-

tion (Bombus richness), or a Bernoulli distribution (Bom-

bus presence/absence). All models included categorical

effects of year and sampling round. We also included a

random effect to account for the effect of sampling in the

same sites over multiple years. For the abundance ana-

lyses, we modeled individuals captured per trap by

including an offset for number of sampling traps on the

stand (i.e., 1 or 2), as a small subset of traps were ren-

dered inoperable by marauding American black bears

(Ursus americanus). In richness and presence/absence

models, we included number of traps as a categorical

covariate to account for heterogeneity in sampling effort.

We fitted all models using the lme4 package (Bates

et al., 2015) in R.

Preliminary examination of the data indicated a clear

linear relationship between all response variables and the

LiDAR Cover variable. Either a linear or quadratic rela-

tionship with Int3 and RdNBR seemed plausible. We

thus fit four Landsat models and four LiDAR models.

The Landsat models included linear and quadratic

RdNBR effects with and without an interaction with

sampling round. The LiDAR models all included a linear

Cover effect along with linear and quadratic Int3 effects,

with and without interactions between sampling round

and both LiDAR covariates. In each analysis, we com-

pared all eight candidate models using Akaike’s informa-

tion criterion corrected for small sample size (AICc). We

evaluated the fit of the top model for each of the four

response variables by testing the dataset for zero infla-

tion and by testing the scaled residuals for normality,

overdispersion, outliers, and heteroscedasticity across

predicted values using the DHARMa package (v. 0.4.3;

Hartig, 2021) in R version 4.2.0 (R Core Team, 2022).

We then calculated the AICc weight (i.e., the weight of

evidence the model is the best of the candidate set) of

each ith model as

wi ¼ exp �0:5Δið Þ
∑
8

r¼1
exp �0:5Δrð Þ

where i represents the difference in AICc between model i

and the top ranked model (Burnham & Anderson, 2002).

Finally, we compared the relative importance of Landsat-

derived vs. LiDAR-derived variables for explaining each

response variable by summing these weights across

models containing the relevant variables (Burnham &

Anderson, 2002). All data and code are available as sup-

plementary materials.

Results

We collected samples at n = 33 stands in 2016 and

n = 34 stands in 2017, and our sampling documented a

relatively high diversity of bee species in recently burned

conifer forest. Across both years, we trapped 3130 speci-

mens representing 99 species/morphospecies, 23 genera,

and 5 families (Table S1). The most abundant genus we

detected was Halictus (4 species, 36.5% of total

Table 2. The variable loadings and proportion of variance explained

by the first principal component for each covariate.

Variable loadings Variance

explained

(proportion)Covariate 50 m 100 m 250 m 500 m 1000 m

Cover 0.52 0.53 0.55 0.34 0.15 0.63

CRS1 0.50 0.51 0.53 0.39 0.24 0.66

CRS3 0.49 0.50 0.52 0.43 0.24 0.69

Int1 0.47 0.47 0.51 0.43 0.35 0.74

Int3 0.46 0.47 0.50 0.45 0.35 0.77

IntMean 0.48 0.49 0.52 0.40 0.32 0.69

RP1 0.52 0.53 0.55 0.34 0.15 0.63

RP3 0.51 0.51 0.53 0.40 0.20 0.67

BAM 0.46 0.45 0.48 0.44 0.39 0.78

Htmean 0.51 0.52 0.52 0.42 0.16 0.68

RdNBR 0.50 0.50 0.52 0.43 0.23 0.69

We measured each of 11 covariates at five different spatial scales

then condensed them using variable-specific principal components

analyses. We then chose the first principal component to use in our

analysis exploring the impacts of Landsat and LiDAR variables on bee

communities.
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individuals captured) followed by Bombus (11 species,

20.7%), Lasioglossum (16 species/morphospecies, 19.6%),

and Xylocopa (1 species, 7.3%; Table S1). Only two bee

species—Apis mellifera and Osmia bicornis—were classi-

fied as non-native. Because those two species accounted

for a small number of individuals (\6%) and because we

found little difference between models evaluating the

response of all bee species relative to those evaluating

native bee species alone, we retained both species in our

final analyses. During the course of our study, 24 Lasio-

glossum specimens were damaged during trapping to the

point where they could not be identified to morphospe-

cies (Table S1); therefore, these individuals were included

in descriptive measures and models quantifying bee abun-

dance, but they were removed from descriptions and

models of bee species richness.

We found that the LiDAR-based forest structure vari-

ables were better than the Landsat-based RdNBR variable

for explaining total bee abundance. For this response vari-

able, the LiDAR model containing linear Cover and Int3

effects with sampling round interactions had the greatest

support (AICc weight = 0.52; Table 3). All models con-

taining RdNBR had little support as indicated by AICc

values [ 2. Indeed, when assessed over all candidate

models, the relative importance of forest structure metrics

for explaining total and native bee abundance was more

than three times greater than that of RdNBR (Fig. 2).

Conversely, RdNBR was substantially more useful for

explaining Bombus presence/absence than the forest struc-

ture variables. Among the eight models we considered,

only the quadratic RdNBR model had substantial support

(AICc weight = 0.83; Table 3), whereas all models

Table 3. A comparison of candidate models used to evaluate the effects of Landsat and LiDAR variables on four bee community metrics: total

abundance, total abundance and richness, and presence/absence and richness of Bombus species.

Response variable Model K Log likelihood AICc ΔAICc AICc wt. Cum. wt.

Bee abundance Cover*Sample + Int3*Sample 15 �716.65 1465.50 0.00 0.52 0.52

RdNBR2 9 �724.76 1468.32 2.82 0.13 0.64

Cover + Int3 9 �724.86 1468.52 3.02 0.11 0.76

Cover*Sample + Int32*Sample 19 �713.68 1468.91 3.41 0.09 0.85

RdNBR2*Sample 15 �718.45 1469.09 3.59 0.09 0.94

Cover + Int32 10 �724.46 1469.90 4.40 0.06 0.99

RdNBR*Sample 11 �725.88 1474.94 9.44 0.00 1.00

RdNBR 8 �731.22 1479.07 13.57 0.00 1.00

Bee richness RdNBR2*Sample 16 �511.45 1057.40 0.00 0.45 0.45

RdNBR2 10 �518.41 1057.81 0.41 0.37 0.82

Cover*Sample + Int3*Sample 16 �512.86 1060.22 2.82 0.11 0.93

Cover + Int3 10 �521.19 1063.38 5.97 0.02 0.95

Cover + Int32 11 �520.49 1064.17 6.77 0.02 0.97

Cover*Sample + Int32*Sample 20 �510.12 1064.18 6.78 0.02 0.98

RdNBR*Sample 12 �519.49 1064.40 7.00 0.01 1.00

RdNBR 9 �524.66 1068.12 10.71 0.00 1.00

Bombus presence RdNBR2 9 �129.91 278.62 0.00 0.83 0.83

RdNBR 8 �133.11 282.85 4.23 0.10 0.93

Cover + Int3 9 �132.75 284.30 5.68 0.05 0.97

Cover + Int32 10 �132.57 286.13 7.51 0.02 0.99

RdNBR*Collection 11 �133.07 289.33 10.71 0.00 1.00

RdNBR2*Collection 15 �129.26 290.72 12.11 0.00 1.00

Cover*Collection + Int3*Collection 15 �131.97 296.15 17.53 0.00 1.00

Cover*Collection + Int32*Collection 19 �130.33 302.22 23.60 0.00 1.00

Bombus richness RdNBR2 9 �260.93 540.66 0.00 0.47 0.47

Cover + Int3 9 �261.70 542.20 1.54 0.22 0.69

RdNBR2*Sample 15 �255.57 543.34 2.68 0.12 0.82

Cover + Int32 10 �261.52 544.04 3.38 0.09 0.91

RdNBR 8 �263.88 544.41 3.75 0.07 0.98

Cover*Sample + Int3*Sample 15 �257.87 547.94 7.28 0.01 0.99

RdNBR*Sample 11 �262.81 548.80 8.14 0.01 1.00

Cover*Sample + Int32*Sample 19 �255.43 552.41 11.75 0.00 1.00

For each model, we report the number of parameters (K), log likelihood, AICc, difference in AICc compared to the top model (ΔAICc), weight of

evidence in support of the model (AICc wt.), and cumulative weight of the ranked models (Cum. wt.). Larger log likelihood values indicate better

model fit, while smaller AICc values indicate a more parsimonious fit.
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containing the forest structure metrics had limited sup-

port as indicated by AICc weights ≤0.05. When we

summed these weights across models, the relative impor-

tance of RdNBR for explaining Bombus presence/absence

was nearly 14 times greater than the importance of

LiDAR-derived forest structure (Fig. 2).

Species richness results were more nuanced. Within

both the total richness and Bombus richness model sets, a

model containing a quadratic RdNBR effect had the

greatest support; the top total richness model also

included an interaction with sampling round (Table 3).

Furthermore, the relative importance of RdNBR was five

times greater than the importance of the forest structure

variables for explaining total richness, and two times

greater for explaining Bombus richness. No LiDAR forest

structure models had substantial support for total rich-

ness, but the model including linear Cover and Int3

effects did have substantial support for Bombus richness

with a AICc value of \1.54.

The top abundance model indicated a strong decrease

in bee abundance with increasing cover; this model also

indicated the effects of Int3 varied among sampling

rounds, but bee abundance was generally lowest at inter-

mediate Int3 levels (Fig. 3A). Top models for the other

three response variables exhibited similar patterns. Total

bee richness, Bombus presence, and Bombus richness were

lowest in stands with the lowest RdNBR values (i.e., at

sites that burned the least severely), peaked at moderately

high levels of burn severity, and decreased again in stands

experiencing the most severe fires (Fig. 3B–D).

Discussion

Our study found that LiDAR-derived forest metrics can

improve our understanding of how bee communities

respond to wildfire when used in conjunction with the

Landsat-derived measures of burn severity that are com-

monly used to quantify post-fire landscapes. We hypothe-

sized that LiDAR forest structure models would have

better predictive ability for bee abundance and species

richness relative to a Landsat burn severity model, and

that bumble bees would exhibit a different responsive rel-

ative to the broader bee community because of their large

foraging distances. We did find that abundance of the bee

community was closely linked to forest structure; specifi-

cally, LiDAR-derived measures of cover [ 2 m and the

intensity of returns [ 10 m. However, the best-fitting

LiDAR forest structure model did not outperform the

Landsat burn severity-only model in predicting the rich-

ness of the sampled bee community. Similarly, the Land-

sat burn severity model outperformed forest structure in

predicting the presence and richness of Bombus in our

study.

The contrasting results we found when predicting mea-

sures of bee communities indicate divergent responses of

different bee taxa to forest wildfire. Indeed, different bee

species inhabiting the same communities can respond to

habitat variables (e.g., floral abundance and diversity) at

different spatial scales due to their diverse foraging ranges

and distinct life-history traits (Bommarco et al., 2010;

Williams et al., 2010). Thus, it is perhaps unsurprising

that the abundance and richness of the sampled bee com-

munity would be predicted by a different set of measures.

In our study area, a few species dominated the sampled

bee community and they were much more abundant in

severely burned, open stands (Galbraith et al., 2019a).

However, for the genus Bombus, both presence and spe-

cies richness were best predicted by the Landsat burn

severity model, and they were greatest at the intermediate

RdNBR principal component variable. Although species

in this genus benefit from pulses of resources following

wildfire (Burkle et al., 2019; Galbraith et al., 2019a,

2019b; Mola et al., 2020a), they are also able to travel

through forests (Mola et al., 2020b; Mola et al., 2021)

and therefore may prefer patchier, mixed-severity land-

scapes that provide an abundance of flowering plants and

nesting substrates. In our study, the lowest values of the

RdNBR principal component likely represented a land-

scape with too few floral resources for most of the bee

community. However, the highest values of the variable

might be limiting for groups such as Bombus because of

Figure 2. The relative importance of the Landsat burn severity and

LiDAR forest composition models fit to explain four bee community

metrics (bee abundance, bee species richness, Bombus presence, and

Bombus richness). We calculated relative importance by summing the

AICc weights of the four Landsat or four LiDAR models fit for each

dataset. Weights of all eight models for a given response variable sum

to one, so larger values indicate greater importance for the covariate

group.
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reduced nutrition (Simanonok & Burkle, 2020) and nest-

ing habitat (Liczner & Colla, 2019; Pugesek &

Crone, 2021) within the landscape.

Our study provides novel insights into the way forest

structure influences the bee communities, as we found

that high-resolution, three-dimensional LiDAR variables

(cover and intensity of returns in the canopy) outper-

formed burn severity for predicting bee abundance.

Although we have shown in previous work that burn

severity is strongly correlated with bee abundance (Gal-

braith et al., 2019a), LiDAR-derived measures of forest

structure were a better measure of bee abundance in this

study. Furthermore, bee richness, Bombus presence, and

Bombus richness in this study exhibited a quadratic rela-

tionship with the RdNBR principal component variable

and were slightly reduced at the highest values of the var-

iable. We posit that these differences are likely due to the

spatial scale of our inference: Our past work examined

the influence of burn severity at the local scale (Galbraith

et al., 2019a) whereas this investigation combined data

from multiple spatial scales in each principal component

variable. In using a new approach for addressing spatial

scale relative to our prior work in this system (Galbraith

et al., 2019a; Galbraith et al., 2019b; Galbraith

et al., 2021), we emphasize the importance of considering

spatial scale when evaluating habitats for bee communities

and interpreting results that represent species with diverse

life histories and foraging ranges.

Landsat imagery has been made freely available over

broad spatial and temporal scales, and it is an important

tool for quantifying burn severity (Reilly et al., 2017).

Our study provides further evidence that this approach

can be used by land managers to predict the diversity of

bee communities following wildfire, at least in regions

where the relationship between bees and burn severity has

been clearly established in the literature. However, to

develop broader hypotheses about bees and burn severity,

we must identify and measure the post-fire habitat vari-

ables that drive the relationship. Our findings highlight

the unique opportunities provided by LiDAR data for

exploring such variables.

One of such opportunities is investigating the relevance

of previously unexplored LiDAR-derived variables to bee

communities. Intensity returns [ 10 m (Int3), in

Figure 3. Relationships between remotely sensed variables and bee distributions based on the top model from each analysis. (A) Total bee

abundance was best modeled using LiDAR-based covariates (Cover and Int3) whereas (B) total bee richness, (C) Bombus presence, and (D)

Bombus richness were best modeled using the Landsat-based covariate RdNBR. We aggregated information for each covariate across multiple

spatial scales using a principal components (PC) analysis prior to model building; values on the x-axes represent a gradient from low to high

covariate values across scales.
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combination with the Cover variable, was one of the most

important measures for predicting bee abundance in our

study. The intensity variable represents reflective proper-

ties of vegetation, and it relates to canopy openness and

the spacing and foliage types within individual tree

crowns (Moffiet et al., 2005). Bee abundance in our study

was generally lowest at intermediate levels of intensity,

and the relationship between bee abundance and intensity

also depended on the season when bees were sampled.

We hypothesize that the intensity variable may be indicat-

ing the temporal shift in bee resource use in these plots

due to tree species composition. The presence of decidu-

ous trees would lead to pulses of resources that change

over time, so that the presence of these trees would be

more important at certain points in the season. Because

the foliage of deciduous trees differs from that of conifers,

they would reflect different intensity returns in the

remaining canopy after the fire. At other times in the sea-

son, bees might be more likely to respond to canopy

openness rather than returns from these trees. Other

studies have highlighted the importance of deciduous

trees for pollinators (Ulyshen, 2011; Urban-Mead

et al., 2021), so additional work is needed to evaluate the

role of deciduous trees play in providing floral resources

in post-fire forests, particularly in predominantly conifer

forests of the western United States. In particular, such

studies should consider sampling floral visitors within the

canopy as well as the understory to assess whether the

temporal availability of floral resources in deciduous trees

may contribute to changes in bee communities across

time (Ulyshen et al., 2023).

LiDAR presents new opportunities for understanding

the role of insects within forest ecosystems because it can

be used to measure critical forest structure variables at

the scale needed for these studies. The cost and availabil-

ity of LiDAR data are important considerations that may

inhibit its widespread use for research and conservation,

including investigations focused on forest pollinators.

However, collecting field-based data can also be expensive

at the spatial scales needed for landscape-scale manage-

ment following large wildfires (Bombi et al., 2019; Pereira

& Cooper, 2006), and there can be a large return on

investment for obtaining LiDAR data if it can be lever-

aged to meet additional research objectives (Melville

et al., 2015). Our study provides additional evidence that

these datasets hold potential for answering a growing col-

lection of questions focused on small invertebrates such

as insect pollinators. As many governments and organiza-

tions make calls to protect pollinators (IPBES, 2016;

Underwood et al., 2017; WHPHTF, 2015), remotely

sensed data will continue to be essential for making con-

servation efforts possible at broad spatial scales and

dynamic, heterogeneous landscapes.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Taxonomic diversity and abundance of wild

bees captured via blue vane traps at n = 34 stands located

within the Douglas Fire Complex during May–August
2016 and 2017.
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