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Abstract

In this paper, we compare predictions made with two forest growth models of maximum annual net primary
production and seasonal trends in the constraints imposed by different climatic variables at 18 sites in the Siskiyou
Mountains of southwestern Oregon. One model, 3-PGS, is a production model driven by remote sensing data,
running at monthly time steps, while the other, BIOME-BGC, is a complex eco-physiological model run at daily time
steps. Both models include subroutines for predicting the interception of radiation and its dissipation as energy for
evaporating water and the absorbed fraction that is photosynthetically active (400—700 nm). The models differ in a
number of ways, including the estimation of canopy dynamics, calculation of respiration, use of growth modifiers and
below ground mechanisms. In 3-PGS, canopy dynamics are derived from remote sensing inputs, and autotrophic
respiration is assumed a constant fraction of gross photosynthesis = 0.53; in BIOME-BGC, the canopy biomass is
accumulated through allocation, with respiration a function of live biomass, temperature, and nitrogen content.
BIOME-BGC includes decomposition and nitrogen mineralization subroutines, while 3-PGS incorporates these
processes through an index of soil fertility. Plot-based information was available at each site on species composition,
site productivity, phenology, and seasonal trends in plant water relations. Long-term averages of minimum/maximum
temperature and precipitation were extrapolated from local meteorological stations and converted into estimates of
solar radiation, daytime vapor pressure deficits, and frequency of subfreezing temperatures for the sites, which ranged
in elevation from 550 to 2135 m and had varying slopes and aspects. State-wide soil survey data were interpreted to
estimate soil water holding capacity and fertility. Satellite-derived data were used to drive 3-PGS and to validate
predictions of leaf area by BIOME-BCG. The two models gave similar annual estimates of total net primary
production (2 = 0.85, slope = 0.64, intercept: 2.26 Mg ha ~! year —!) but differed in their presentation of photosyn-
thetic activity seasonally. 3-PGS has a suboptimal temperature function that provides more realistically limits on
photosynthesis during the dormant season than assumed by BIOME-BGC. BIOME-BGC predicted seasonal
variation in the ratio of autotrophic respiration to gross photosynthesis from 0.4 to 0.7, but over the year, the average
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was similar to that assumed by 3-PGS (0.58 + 0.05). We discovered that Landsat imagery with 30 m spatial resolution
was reasonably correlated with leaf area indices as predicted by the BIOME-BGC model, but a variation still
occurred associated with small areas where outcrops of serpentine restricted canopy development. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Over the last 30 years, considerable progress
has been made through the development of gen-
eral models of ecosystem operation and in the
way that we understand how vegetation on land-
scapes interact with regional and general atmo-
spheric circulation models. Ecosystem models
combine representations of plant biology, ecosys-
tem dynamics and functions simulating, photo-
synthesis, stem and leaf, carbon and nutrient
dynamics (Jiang et al., 1999). The models predict
seasonal and interannual patterns of carbon and
water vapor exchange at varying spatial and tem-
poral resolutions and are represented by
BIOMASS (McMurtrie et al., 1990), CENTURY
(Parton et al., 1992), CASA (Potter et al., 1993),
3-PG (Landsberg and Waring 1997) and BIOME-
BGC (Running and Hunt 1993). Where suitable

Table 1
List of acronyms and symbols used in this paper

3-PGS  Physiological principles predicting growth from

satellites
O Quantum canopy efficiency
0 Mean available soil water holding capacity
17 Pre-dawn water potential

VPD Vapor pressure deficit

DEM Digital elevation model

APAR  Absorbed photosynthetically active radiation
APARu Absorbed photosynthetically active radiation

utilised

CTI Compound topographic Index

fPAR Fraction of photosynthetically active radiation
intercepted

L Leaf area index

NDVI Normalized difference vegetation Index

Py Above ground biomass

Py Below ground biomass

Pg Gross primary production

Py Net primary production

RA Autotrophic respiration

micrometeorological measurements can be ob-
tained, there is generally a good agreement be-
tween  model  predictions and  ground
observations.

There has also been a significant development
in models that estimate vegetation dynamics
based on remote sensing data. These models are
generally used to predict existing patterns of net
primary productivity (Py) rather than predict Py
and utilize broad- and fine-scale remote sensing
observations to drive the model most commonly
through changing canopy function or growth.
GLO-PEM, GLO-PEM 2 (Prince and Goward
1995; Goetz et al., 1999) and 3-PGS (Coops et al.,
1998) are examples of this type of model. All these
models share some general properties: they calcu-
late photosynthetically active radiation inter-
cepted by the canopy (fPAR) and estimate
canopy gross photosynthesis or gross primary
production (Pg), which is converted into estimates
of autotrophic respiration (R,) and Py, and the
latter partitioned to growth above- and below
ground (see Table 1 for a summary of symbols
and acronyms).

To apply these models, locations with homoge-
neous vegetation and minimal topographical vari-
ation must be delineated and site-specific
meteorological data acquired. As a result of these
restrictions, few ecosystem models have been
tested in mountainous topography. One exception
was Running (1994), who applied an ecosystem
model (FOREST-BGC) to a range of sites in
western Oregon where high-quality meteorologi-
cal data were available along with seasonal esti-
mates in the availability of soil water, inferred
through the measurement of plant predawn water
potentials (¥). FOREST-BGC accurately pre-
dicted seasonal variation in ¥ on drought-prone
sites, given reasonable values of the total water
available in the rooting zone. Similar success was
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achieved with a simpler model (3-PG) developed
by Landsberg and Waring (1997), which runs at
monthly, rather than daily, time steps. 3-PG and a
satellite-driven form of the model, 3-PGS, have
been applied to forest environments in Australia
and New Zealand (Landsberg and Waring, 1997,
Coops 1999), South America, South Africa, UK
(Waring, 2000) and North America (Landsberg et
al., 2000; Coops et al., in press a).

To extend model predictions more generally
into mountainous regions requires extrapolation
and transformation of weather station data, and
broad-scale estimates on the fertility and water
holding capacity of soils. Although techniques are
available to accomplish these tasks, there is rarely
an opportunity to confirm how well results apply
in mountainous terrain. As part of a regional
study in southwestern Oregon, Coops and Waring
(2000) demonstrated that 3-PGS, when initialized
with satellite-derived estimates of canopy light
interception ( fPAR) and converted meteorologi-
cal data extrapolated from weather stations, could
predict the growth capacity at the same 18 sites
used in this model comparison paper with an
r>=0. 76 and a standard error of 0.8 m* ha~'
year ~ !, significant at P <0.01. In addition, the
process model correctly differentiated rates of soil
water depletion with considerable accuracy (1> =
0.78).

Indirectly, the analysis supported the assump-
tion that minimum/maximum temperature and
precipitation data, available from many weather
stations, could be successfully extrapolated across
landscapes at a spatial resolution of 200 m and
transformed into a complete set of climatic vari-
ables required to drive the process model: solar
radiation, vapor pressure deficits, precipitation,
mean and extreme temperatures. Moreover, by
working with mean monthly meteorological data,
averaged over 30 years, Coops and Waring (2000)
demonstrated that general trends in growth and
soil water depletion could be predicted across the
region without requiring more detailed weather
data.

With confidence in the general modeling
methodology, and in our ability to extrapolate
climate and soils data, we expand the approach
by comparing results at the same sites with a more

refined ecosystem model (BIOME-BGC) that runs

at daily, rather than monthly, time steps. Satellite-

derived estimates of leaf area index (L) or the
fraction of light intercepted by the vegetation
were acquired to initialize 3-PGS and to validate
the predictions made with BIOME-BGC.

The models differ in some important ways:

1. BIOME-BGC is an eco-physiological model
simulating the photosynthesis processes in
plants and its response to environmental fac-
tors. It can be used as both a predictive and
diagnostic tool. BIOME-BGC includes a vari-
ety of processes including new leaf growth and
litterfall, snow accumulation and melting,
drainage and runoff of soil water, transpira-
tion of soil water through leaf stomata, uptake
of nitrogen from the soil, decomposition of
fresh plant litter and old soil organic matter,
plant mortality and fire. The model employs a
daily time step, allows for multiple factor in-
teractions, and assumes that the photosynthe-
sis process is relatively insensitive to
temperatures once they rise above freezing.

2. 3-PGS is descended from the 3-PG eco-physio-
logical model (Landsberg and Waring 1997).
However, 3-PGS replies on remote sensing
estimates to drive canopy dynamics and thus
predicts patterns of Py. The model employs a
monthly time step and considers a single factor
most limiting photosynthesis each month and
the possibility that suboptimal temperatures
can reduce photosynthetic capacity signifi-
cantly, regardless of other factors. The impor-
tance of underlying assumptions and the
advantages and disadvantages of daily versus
monthly time steps are key issues in the analy-
sis presented in this paper.

2. Methods
2.1. Study area

The Siskiyou Mountains, which extend from
Southern Oregon into northwestern California,
represent a steep climatic gradient with annual
precipitation increasing from < 50 to 250 cm. The
most widely distributed species in the region is
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Table 2
Description of the 18 study plots

Stand  Elevation (m) Slope (%) Aspect  Parent material Dominant vegetation

1 1490 25 w Granite White fir, ponderosa pine, Douglas-fir

2 1675 60 WNW  Granite White fir, Douglas-fir

3 780 45 N Granite Douglas-fir, black oak, ponderosa pine

4 1920 65 SE Ultrabasic Jeffrey pine, incense-cedar,western white pine

5 1710 65 SE Ultrabasic Jeffrey pine, incense-cedar

6 2040 35 NNE Granite Mountain hemlock, Shasta red fir

7 1920 20 N Granite Shasta red fir

8 1280 40 SwW Granite Ponderosa pine, Douglas-fir

9 1550 55 NNW Metavolcanic White fir, sugar pine, Shasta red fir

10 1740 55 N Metavolcanic Brewer spruce, Shasta red fir,mountain hemlock
11 1370 35 SW Granite Ponderosa pine, sugar pine, white fir,Douglas-fir
17 1830 10 E Metavolcanic Shasta red fir

18 2135 30 NE Granite Mountain hemlock

20 760 70 NNW Mica schist Douglas-fir, Pacific yew

21 550 75 N Metavolcanic Douglas-fir, black oak, Oregon white oak

22 1460 50 N Metasedimentary  Douglas-fir, white fir

23 1400 10 N Granite Engelmann spruce, Douglas-fir, white fir

25 1740 5 SE Ultrabasic Jeffrey pine, white fir, incense-cedar,Douglas-fir

Douglas-fir (Pseudotsuga menziesii), but the cli-
mate is much drier than typical where the species
is more dominant in the Pacific Northwest region
of the United States. The geology is also more
complex than elsewhere in the region with the
oldest parent materials dating back to the Sil-
urian, more than 320 million years BP. There is a
full range of igneous rocks present, ranging from
acidic, silica-rich granites to the most ultrabasic
peridotites. In addition, the sedimentary and
metamorphic rocks are widely represented. The
most fertile soils are derived from graphite mica
schist (Waring and Youngberg, 1972), an unusual
parent material, because it contains nitrogen in its
matrix (Dahlgren, 1994). The most infertile soils
are derived from peridotite, and its metamorphic
equivalent, serpentine.

The Siskiyou Mountains contain many endemic
species, with closer ties to flora in China and the
Appalachian Mountains in the eastern USA than
to other areas in western North America (Whit-
taker, 1961). The area is particularly rich in
conifers, with more than a dozen species present
in some areas (Waring, 1969). Jeffrey pine, which
is at its northern limits, is restricted to soils
derived from peridotite and serpentine.

2.2. Plot data

Waring (1969) established an initial survey of
150 forest stands in the region and from that
selected 25 stands within the eastern portion of
the Siskiyou Mountains that represented the full
range of vegetation, environmental, terrain and
soil conditions, 18 of which were located in Ore-
gon with the others in northwestern California. At
each stand, environmental data on air and soil
temperature, radiation, humidity, soil moisture,
and soil fertility bioassays were acquired, but only
over a few years. Tree composition and general
plot descriptions are presented in Table 2. Physio-
logical responses measured on two widely dis-
tributed conifers, Douglas-fir  (Pseudotsuga
menziesii) and Shasta red fir (Abies magnifica var.
shastensis), included cell and leaf phenology, plant
water potential, stomatal resistance, and foliar
nutrition. Site productivity was estimated by de-
termining maximum height of trees in mature
stands and using this information to predict
height and volume growth from forestry yield
tables. Details of this work have been published
elsewhere (Waring and Cleary, 1967, Waring,
1969; Atzet and Waring, 1970; Waring and
Youngberg, 1972; Reed and Waring, 1974).
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2.3. Models

2.3.1. 3-PGS

The 3-PGS (Physiological Principles Predicting
Growth from Satellites) developed by Coops et al.
(1998) is a simplified version of the original imple-
mentation of the 3-PG model (Landsberg and
Waring 1997) and is driven primarily by vegeta-
tion light absorption, which determines the poten-
tial physiological rates. 3-PGS uses many of the
principles that underlie earlier models such as
FOREST-BGC (Running and Coughlan, 1988),
and BIOMASS (McMurtrie et al., 1990). Like
these models, 3-PGS first estimates absorbed pho-
tosynthetically active radiation (APAR). APAR is
critical to 3-PGS as it provides the energy to drive
the potential photosynthesis rates. APAR is com-
puted as a product of incident PAR (photosyn-
thetically active radiation) and the fraction of
PAR absorbed by the forest canopies (fPAR),
which is estimated from a satellite-derived index
(discussed below). As APAR is a product of both
PAR and fPAR, it will be affected by errors in
either of these (Goetz et al., 1999). As a result, in
order to apply the 3-PGS model, monthly esti-
mates of fPAR (either from real time satellite
imagery or historical records) and PAR are re-
quired. 3-PGS then calculates the utilized portion
of APAR (APARu) by reducing APAR by an
amount determined by the most constraining of a
series of environmental modifiers that affect gas
exchange through stomata: (a) high day-time at-
mospheric vapor pressure deficits (VPD), (b) soil
water availability, and (c) the frequency of sub-
freezing temperatures (< — 2°C). In addition,
photosynthesis is further constrained by subopti-
mal temperatures that reduce the maximum quan-
tum efficiency (2.), defined by the availability of
nutrients, specifically nitrogen. Gross primary
production (Pg) is thus calculated at monthly
time steps as the product of the amount of
APARu and the ‘effective’ (suboptimal tempera-
ture adjusted) quantum efficiency (Landsberg and
Waring, 1997).

The Penman—Monteith equation is applied to
estimate transpiration from the canopy and
through a water balance that considers precipita-
tion and drainage, to estimate the change in soil

water availability at monthly time steps. The
model predicts outflow when soil water content
exceeds the estimated storage capacity.

A major simplification in the 3-PGS is that it
does not require calculation of respiration or root
turnover. In 3-PGS, autotrophic respiration is
assumed in temperate forests to be essentially a
fixed fraction of gross photosynthesis (0.53 +
0.04) when averaged over a month or a year
(Landsberg and Waring, 1997; Waring et al.,
1998). A further simplification of 3-PGS is that it
partitions Py into only two components: root and
above-ground biomass. The fraction of total NPP
allocated to root growth increases from 0.2 to 0.6
as the ratio APARu/APAR decreases from 1.0 to
0.2. The soil fertility index also can affect alloca-
tion if the ranking is below that of other factors
for a given month.

The fraction of PAR absorbed by the forest
canopies (fPAR) is estimated from a satellite-
derived index, based on the normalised difference
between reflectances measured in the near-in-
frared and red wavelengths, termed the nor-
malised difference vegetation index (NDVI). This
spectral vegetation index has been shown, both
empirically and theoretically, to be related to the
fPAR absorbed by vegetation canopies (Kumar
and Monteith, 1982; Sellers, 1985, 1987, Goward
et al., 1994).

In order to derive annual estimates of NPP, the
monthly predictions of the model are simply accu-
mulated over a 12 month period. As 3-PGS relies
on continually updated estimates of PAR and
fPAR for each month, the model does not carry
the current vegetation condition forward into
each new time step. The only modifier that is
initialised by the previous month’s condition is
soil water availability, which maintains an ongo-
ing estimate of soil moisture.

2.3.2. BIOME-BGC

The BIOME-BGC (BioGeochemical Cycles)
model is a multi-biome generalization of
FOREST-BGC, originally developed to simulate
how a forest stand develops through a life cycle
(Running and Coughlan, 1988; Running and
Gower, 1991). BIOME-BGC operates at a daily
time step with prescribed meteorological (maxi-
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mum and minimum temperature, precipitation,
humidity, and shortwave radiation) and site de-
scription information. General allometric relation-
ships are described for seven vegetation life forms
that are used to initialize plant and soil carbon
and nitrogen pools. Although earlier versions of
the model used satellite-derived data to estimate
canopy L, the present configuration generates
equilibrium estimates of L and can use satellite-
derived data to confirm the validity of these
estimates.

Atmospheric CO, is consumed during photo-
synthesis, which is modeled with the Farquhar
photosynthesis equations (Farquhar et al., 1980).
Photosynthesis is controlled by the presence or
absence of a canopy, APAR, the amount and
activity of leaf photosynthetic enzyme concentra-
tion, CO, concentration, and leaf conductance.
Prescribed shortwave radiation and an exponen-
tial decay function that controls canopy light
extinction determine APAR. Leaf conductance
(calculated from stomatal conductance and cutic-
ular conductance in parallel and boundary layer
conductance in series) modified by a combination
of environmental stresses (Jarvis and Mc-
Naughton, 1986) controls internal leaf CO,.
Maintenance respiration is subtracted from gross
assimilation based on tissue N concentration and
ambient temperature (Ryan, 1991). The remaining
photosynthate is available for allocation to new
growth to one or more of the BIOME-BGC C
pools: leaf, stem, coarse root, or fine root. A fixed
rate of growth respiration (30%) is assigned to
each new unit of biomass produced. BIOME-
BGC models production of litter and coarse-
woody debris explicitly, either as litterfall and fine
root turnover or through whole plant mortality.

BIOME-BGC models hydrologic processes
starting with precipitation that enters the system,
and estimates the amount intercepted by the
canopy and litter, with the remainder stored as
snowpack or infiltrating into the soil. The snow-
pack either melts, releasing water into the soil, or
sublimates releasing vapor to the atmosphere.
Water vapor leaves the system through evapora-
tion from the soil and canopy surface or through
transpiration. Water vapor fluxes, as in 3-PGS,
are estimated with the Penman—Monteith equa-

tion. A one-dimensional bucket model defines the
soil water holding capacity, which, when ex-
ceeded, leads to outflow. Soil water storage capac-
ity is a function of soil type and the depth of the
rooting zone. ¥ becomes increasingly more nega-
tive, and limiting, as the available water is de-
pleted (White, 1999).

Decomposition and mineralization rates are a
function of soil temperature, moisture content,
and C:N ratios of litter components. Nutrient
uptake is a function of pool size, mineralization
rates, and transpiration. Both carbon and water
cycling components of BIOME-BGC has been
tested previously with success (Nemani and Run-
ning, 1989; Hunt et al., 1991; Korol et al., 1991;
Pierce et al., 1993; Running, 1994; White and
Running, 1994). In this paper, we use the most
recently implementation of BIOME-BGC de-
scribed by Thornton (1998).

2.4. Data sources for the models

2.4.1. Climate

For 3-PGS, mean monthly minimum and maxi-
mum temperature and precipitation data for the
sites were derived using the PRISM (Parameter-
elevation Regressions on Independent Slopes
Model) software, which takes meteorological sta-
tion data together with a digital elevation model
(DEM) data to generate a grid of estimates of
climate parameters at a resolution of 4 km? (Daly
et al., 1994). PRISM was specifically developed to
predict climate across Oregon, so the challenges
of mountainous terrain played a central role in its
conceptual development.

To generate mean daily observations of mini-
mum and maximum temperature and precipita-
tion required for BIOME-BGC, we first
established relationships between quarterly sea-
sonal PRISM estimates at each of the 18 sites
with quarterly averaged long-term daily averages
recorded at Ruch (Station 357391; 42°14 N,
123°02" W, elevation 480 m), a meteorological
station situated within 4 km of site No. 21. Using
these scaling factors, daily changes in the patterns
of precipitation and temperature were derived
from the relationships shown in Fig. 1 and were
the basis for extrapolation of PRISM seasonal
estimates to each of the 18 sites.
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Fig. 1. (a) Mean daily observations of temperature and (b) precipitation from the Ruch station and PRISM estimates of quarterly
temperatures and precipitation patterns predicted for the same location.
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2.4.2. Radiation

Daily and monthly estimates of total incoming
short-wave radiation were calculated using a mod-
eling approach described by Coops et al. (in press
b), which allows both diffuse and direct solar
radiation to be estimated for each month based
on mean daily maximum and minimum tempera-
tures, latitude, elevation, slope, and aspect. Ad-
justments for differences in slope, aspect, and
elevation are made by varying the fraction of
diffuse and direct solar beam radiation (Goldberg
et al., 1979; Bristow and Campbell, 1984; Hunger-
ford et al., 1989). Total incoming solar radiation
was modelled over the region at a 200 m spatial
resolution.

2.4.3. Soil fertility and soil water holding
capacity

For regional scale mapping and monitoring, the
State Soil Geographic (STATSGO) database is
appropriate because it has been compiled at a
consistent scale for all States (United States De-
partment of Agriculture, 1991). Soil fertility was
inferred principally from the STATSGO mineral-
ogy classes that are provided in the description of
major soil types, taking into account weathering
losses of minerals associated with the age of the
formation. We cross-referenced fertility ranking
where possible with bioassays reported by Waring
and Youngberg (1972). A total of 34 mineralogy
classes are reported in the STATSGO database
for the USA of which 12 occur within the study
area. These 12 classes were ranked from highest to
lowest fertility based on expert knowledge and
additional STATSGO layers including soil type
and broad-scale land unit productivity. The o,
was modified as a function of soil fertility based
on the work of Coops and Waring (2000) and
Waring (2000). The o, was increased linearly from
1.9 to 3.8 gC MJ~! APARu (0.035-0.08 mol C
mol photon ~ ') over the range of fertility derived
from the STATSGO dataset.

For each STATSGO soil series, the depth of
each soil horizon and its mean available soil water
capacity (6) were computed and summed for the
entire profile to provide an estimate of  for each
polygon. This vector coverage was then converted
to raster format with a spatial resolution (size of

the cell) of 250 m, approximately equivalent to a
1:250000 scale. If an individual cell was com-
posed of polygons representing more than one soil
series, the dominant series was selected.

Zheng et al. (1996) proposed a simple model to
modify 0 that used the mean values of 0 from the
STATSGO data set, taking into account fine-scale
variation on the DEM. A compound topographic
index (CTI) was computed as a function of the
contributing area up-slope of a central cell and
the slope at that central cell on the DEM (Moore
et al., 1991). Higher values of CTI tend to be
found at the lower parts of watersheds and in
convergent hollow areas associated with soils of
low hydraulic conductivity or areas with more
gentle slope than average (Beven and Wood,
1983). Soil depth and silt and clay content tend to
increase from ridge tops to the valley bottoms
(Singer and Munns, 1987). Soil erosion is also
related to the direction of water flow, with the
rates highly dependent upon the degree that soils
remain saturated and the slope (Zheng et al.,
1996). The model is an equation that reflects that
a general positive relationship exists between CTI
and 6. Zheng et al. (1996) showed that the distri-
butions of the calculated CTI when compared to
0 as obtained from STATSGO datasets were al-
ways smaller with longer tails in the high end.
Thus, two scalars are needed to transform distri-
butions of CTI into distributions of 6 (Zheng et
al., 1996; Coops, 2000).

2.5. Satellite data

The current AVHRR sensor on board the US
National Oceanic and Atmospheric Administra-
tion’s (NOAA) series of weather satellites pro-
vides data in five spectral channels from the
visible, near-infrared and thermal regions of the
spectrum (Kidwell, 1988). The archive accumu-
lated from these sensors over 15 years has become
a major resource in global change research follow-
ing efforts by NOAA and NASA to produce a
consistent processing algorithm, which has pro-
duced a carefully recalibrated and renavigated
‘Pathfinder’ data set (Agbu and James, 1994).

The interpretation of satellite imagery to pro-
duce vegetation attributes remains a challenging
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problem with multiple factors affecting the signal
recorded by the satellite sensor. Despite these
difficulties, there are some clear relationships be-
tween the photosynthetic capacity of forest vege-
tation, regardless of species or age, and the
spectral response of the vegetation in selected
spectral wavelengths, in particular, the visible and
near-infrared part of the spectrum. The NDVI is a
commonly applied index, and, although a full
explanation of the observed correlation between
NDVI and canopy properties is still to be fully
achieved, studies have shown that there is a linear,
or near linear, relationship between fPAR ab-
sorbed by vegetation canopies and NDVI (Kumar
and Monteith, 1982; Sellers, 1985, 1987; Goward
et al., 1994). There are several limitations to such
an inference, but it appears that an estimate of the
amount of PAR absorbed can be estimated from
NDVI and knowledge of incoming solar radiation
(Prince and Goward, 1995).

Monthly, 1 km, NDVI imagery for 1995 was
obtained from the Pathfinder dataset. To predict
fPAR from NDVI, the equation developed by
Goward et al. (1994) was first used over reference
sites where ground-based measurements of fPAR
were previously determined across a transect of

Table 3
BIOME-BGC input parameters®

Parameter Evergreen
needleleaf

Ratio of total L to one-sided L 2.4

Specific leaf area (m? kg C~!) 20.0

Aerodynamic conductance (mm s~ ') 1.0

Maximum stomatal leaf conductance 0.7
(mm s~ ')

Water potential at stomatal closure —1.6
(MPa)

Vapor pressure deficit at stomatal 2.5
closure (kPa)

Maximum photosynthetic rate (pmol 3.5
m~2s7h)

Optimum temperature (°C) 20

Leaf maintenance respiration (g kg—! 1.2
day™")

Leaf lignin concentration (%) 27

Leaf turnover (%) 33

Maximum height (m) 30

4 Parameters are based on total (all-sided) L.

vegetation (Runyon et al., 1994). We found it
necessary to modify the slope of the relationship
for 1995 AVHRR Pathfinder dataset to match the
original ground-based data, and used the new
equation in this study.

The new equation is:

Fraction of PAR absorbed = 1.67 x NDVI-0.08.
(1)

In applying the 3-PGS and BIOME-BGC models
to pure evergreen forests in the Pacific Northwest,
USA, we recognized that canopy leaf area indices
and the fraction of light absorbed remain essen-
tially stable throughout the year, at least to the
extent that can be discriminated with current re-
mote sensing technology. Because perennial vege-
tation tends to reach a comparable maximum
value of the NDVI during mid-summer (Goward
et al., 1985, 1994; Franklin et al., 1997), we calcu-
lated the maximum NDVI value from the 12
months of 1995 Pathfinder AVHRR data at each
of the 18 sites and used the same maximum NDVI
value for the 12 months to parameterize 3-PGS
and to validate predictions of L generated by
BIOME-BGC.

2.6. Landsat TM satellite data

A 1995 summer Landsat Thematic Mapper
scene was provided for the study region by War-
ren Cohen (USFS Forest Science Laboratory;
Corvallis, OR). To predict fPAR from Landsat
TM NDVI, we used the updated equation listed
above and the Beer—Lambert Law inversion, as-
suming random foliage distribution and an extinc-
tion coefficient of 0.5, to predict L (Gower et al.,
1999).

2.7. Model parameters

The initial input parameters of the two models
are listed for 3-PGS and BIOME-BGC in Tables
3 and 4, respectively. To provide each of the
models with an estimate of soil fertility, separate
controls on soil (or leaf) nitrogen content were
established. In 3-PGS, the «, was increased lin-
early from 1.9 to 3.8 gC MJ~! APARu over the
range of fertility derived from the STATSGO
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Table 4

3-PGS input parameters®

Parameter Douglas fir
Boundary layer conductance (m s~ ') 0.2
Coefficient for conductance to VPD (kPa) —0.5
Maximum conductance stand (m s~ ') 0.02
Extinction coefficient 0.5
Stomatal conductance coefficient (mm s—!) 0.005
Minimum temperature (°C) 0
Optimum temperature (°C) 20
Maximum temperature (°C) 40

4 Parameters are based on projected surface area (0.4 of
all-sided) L.

dataset. In BIOME-BGC, the fraction of leaf
nitrogen in rubisco was used, based on the premise
that the fraction of leaf nitrogen in rubisco controls
potential rates of carboxylation, and is therefore
the dominant control of canopy assimilation. Val-
ues for this fraction were obtained by White (1999),
who undertook a sensitivity analysis on all input
BIOME-BGC parameters and established mean
values from the literature (see Wullschleger, 1993
for a detailed summary of possible values). These
values were then also scaled over the range of
fertility derived from the STATSGO dataset.

3. Results
3.1. Prediction of climate constraints on growth

Fig. 2 presents the daily and monthly climatic
modifiers to growth for three contrasting sites
selected from the total of 18 plots. The type
dominated by Shasta red fir (Abies magnifica var.
shastensis) (Site 17) is restricted to moist sites where
a heavy snow pack accumulates in winter and
remains until July, while the type dominated by
black oak (Quercus kelloggii ) at Site 3 occurs where
water stress is sufficient to bring about early
cessation of cambial activity in the summer.

Fig. 2 shows the influence of temperature, soil
water availability and VPD on growth at the three
sites through the year. The most important limita-
tion to growth in the winter months is incident solar
radiation, which is less than a quarter that available
in mid-summer. Both models predict severe limita-

tions on photosynthesis and growth for the oak
type (site 3). BIOME-BGC predicts temperature
limitations in the first three and the last two months
of the year with vapor pressure deficits exerting
limitations during the summer and spring months.
Water stress is predicted to restrict growth with
essentially no water available from days 185 to 300.
The 3-PGS monthly modifiers follow similar pat-
terns to the BIOME-BGC predictions with VPD
and soil water stress restricting growth in summer.
The 3-PGS temperature constraints are in evidence
during the dormant season, with restrictions on
photosynthesis of up 80% during the winter
months, as supported by field studies where P was
assessed through continuous monitoring of CO,
exchange using the eddy-covariance technique
(Law et al., 2000). In contrast, BIOME-BGC is far
less sensitive to suboptimal temperatures, as long
as they remain above freezing. An important dis-
tinction in the two models is the use of the modifiers
to restrict growth at each time step. In 3-PGS, the
temperature modifier affects o, and the most re-
strictive modifier of soil water and VPD further
limit carbon available for growth and its partition-
ing to above-ground production. BIOME-BGC
uses all three modifiers together directly in its
calculation of daily growth.

The BIOME-BGC modifiers for the site 1 with
intermediate productivity show similar trends to
those depicted for site 3. Soil drought, however, is
less significant with water still available at the end
of the summer. Site 1 has approximately similar
extremes in temperature to those at Site 3. 3-PGS
predicts a similar pattern of soil drought as at Site
1 with available water depleted by the end of
August (confirmed by Waring and Cleary, 1967).
VPD still exerts measurable constraints throughout
much of the year limiting growth by 50% in the
summer months.

The Shasta red fir site (Site 17) was the most
productive. It experiences only minor water stress
during the summer according to both BIOME-
BGC and 3-PGS, as has been confirmed by mea-
surements of predawn water potentials (Waringand
Cleary, 1967). The temperature modifier, however,
reduces the quantum efficiency during January by
40%, compared to 20% at the other two sites.
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(a) BIOME-BGC Oak Type (site 3)

(c) BIOME-BGC Pine Type (site 1)
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Fig. 2. Daily (BIOME_BGC) and monthly (3-PGS) climatic modifiers [temperature (7'), soil water (PSI) and vapor pressure deficit
(VPD)] to growth for three different forest ecosystems (Waring, 1969); (a) BIOME-BGC Oak Type (Site 3), (b) 3-PGS Oak Type,
(c) BIOME-BGC Pine Type (Site 1), (d) 3-PGS Pine Type, (¢) BIOME-BGC Shasta fir Type (Site 17) and (f) 3-PGS Shasta fir Type.
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3.2. Modeling Py at the three sites

Fig. 3 shows the predictions of Py (kgC m~?
day~!) from the 3-PGS and the BIOME-BGC
models at each of the three sites. As indicated
by the modifiers, site 3 is the least productive
site averaging <0.004 kgC m~—2 day ' in Py
throughout the summer months with both mod-
els. Although the models predict similar patterns
in Py accumulation, 3-PGS predicts maximum
growth about a month earlier than does
BIOME-BGC. During the summer, BIOME-
BGC predicts no Py from day 181 to near day
300, whereas 3-PGS still indicates a modest pro-
duction rate during this period.

Both models predict higher rates of produc-
tion at Site 1 than at Site 3 with similar pat-
terns through out the year. Maximum rates
predicted by BIOME-BGC and 3-PGS reach
0.007 (kg C m~2 day~"') for 3-PGS and 0.005
for BIOME-BGC. A similar decline in Py dur-
ing summer, as observed in Site 3, is predicted
by BIOME-BGC. Both models predict an in-
crease in Py after autumn precipitation
recharges the soil.

At Site 17, both models predict the highest
Py rates in summer reaching 0.008 (kgC m—2
day—!) and 0.005 for 3-PGS and BIOME-BGC,
respectively, but the patterns match less well
compared to the other two sites. A more dis-
tinct seasonal peak in production is predicted
with the 3-PGS model than with the BIOME-
BGC. BIOME-BGC rates of growth are less
constrained in winter and spring, and are
slightly more restricted in summer than for 3-
PGS because of greater predicted depletion of
soil water and limitations imposed by high
VPD. In contrast, 3-PGS predictions of Py are
much lower in the winter and spring months,
but then increased and remained relatively high
throughout summer and into autumn in re-
sponse to differences in the rates that soil
water supply is depleted. At key times through-
out the year, such as around day 160 for Site 3
and day 200 at site 17, there are clear differ-
ences between the daily and monthly predictions
of Py.

3.3. Comparison of predictions of Py at all sites

Fig. 4 compares the prediction of annual total
Py from the 3-PGS and BIOME-BGC models (in
units of Mg dry mass ha~' year ~'). The general
correlation between the two predictions of Py is
excellent with an r? value of 0.85. When com-
pared to the 1:1 line, however, there is a difference
with 3-PGS estimates consistently higher than
those of BIOME-BGC (Table 5). The differences
are not likely to be associated with monthly vs.
daily time steps. More likely, the variation in Py
rests with the differences in the estimation of
JfPAR. 3-PGS uses AVHRR-satellite-derived val-
ues to estimate fPAR, and these reflect all vegeta-
tion present, not just the tree component that is
generated by the BIOME-BGC model. Table 5
shows the 3-PGS and BIOME-BGC predictions
of Py and L for the 18 sites.

3.4. Comparison of L predicted by 3-PGS and
BIOME-BGC

Neither of the models depends on highly accu-
rate estimates of L. In the case of 3-PGS, the key
variable predicted from NDVI is fPAR, which
increases by less than 20% once leaf area indices
exceed 3.0, assuming a simple Beer Law relation-
ship with an extinction coefficient of 0.5. BIOME-
BGC requires no estimate of L; the model
generates a value based on interactions with a full
array of environmental factors, including atmo-
spheric CO, (Thornton 1998).

Fig. 5(a) compares predictions of L estimated
by conversion of fPAR measurements acquired
with 1 km AVHRR satellite data to projected L
values predicted by the BIOME-BGC. Fig. 5(b)
compares predictions of L estimated by conver-
sion of fPAR measurements acquired with the
high spatial resolution Landsat TM imagery to
those of BIOME-BGC. The close proximity of
plots to one another, and the 1 km resolution of
AVHRR data result in the 3-PGS predictions of L
being more limited in range (2.0-4.0) than those
derived from BIOME-BGC (0.2-5.0). As a con-
trast, Fig. 5(b) shows a greater range of LAI as
predicted by the Landsat TM imagery and a
slightly increased correlation coefficient value.
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Table 5

3-PGS and BIOME-BGC predictions of net primary production (Py) and leaf area index (L) for the 18 sites

Dominant vegetation Plot number BIOME-BGC L BIOME-BGC Py (Mg ha—! 3-PGS Py (Mg 3-PGS Landsat TM L
year— ') ha~! year—!) AVHRR L
White fir, ponderosa pine, 1 3.50 6.40 6.82 32 2.8
Douglas-fir
White fir, Douglas-fir 2 3.00 5.46 5.84 33 1.8
Douglas-fir, black oak, ponderosa 3 1.24 2.27 333 2.6 2.8
pine
Jeffrey pine, incense-cedar,
Western white pine 4 0.86 1.57 3.70 24 1.4
Jeffrey pine, incense-cedar 5 0.58 1.00 1.68 3.0 1.7
Mountain hemlock, Shasta red fir 6 0.52 0.94 345 2.3 1.0
Shasta red fir 7 3.06 5.46 5.51 3.1 2.4
Ponderosa pine, Douglas-fir 8 0.85 1.59 4.50 3.0 1.5
White fir, sugar pine, Shasta red fir 9 3.40 6.08 5.98 3.5 33
Brewer spruce, Shasta red fir,
Mountain hemlock 10 2.60 4.70 4.76 3.5 2.8
ponderosa pine, sugar pine, white
fir,
Douglas-fir 11 4.70 8.30 8.62 5.0 5.0
Shasta red fir 17 4.04 7.20 6.85 4.1 2.8
Mountain hemlock 18 0.90 1.75 3.70 2.3 14
Douglas-fir, Pacific yew 20 2.60 4.60 5.26 3.7 2.8
Douglas-fir, black oak, Oregon 21 1.80 3.20 3.64 2.7 1.7
white oak
Douglas-fir, white fir 22 2.90 5.20 5.47 39 3.0
Engelmann spruce, Douglas-fir, 23 3.30 5.95 5.71 3.5 33
white fir
Jeffrey pine, white fir, incense-cedar,
Douglas-fir 25 4.10 7.30 6.17 34 38

YL
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Fig. 4. Comparison of the prediction of total Py, (Mg ha~' year —!) from the 3-PGS and BIOME-BGC model with data points and
solid line representing the regression equation. The dotted line represents a 1:1 relationship.

The difference between the two predictions arises
from the ability to discern greater spatial varia-
tion in fPAR, and the subsequent inversion to L,
with 30 m resolution Landsat Thematic Mapper
imagery than with 1 km resolution of AVHRR
data. In addition, however, an exact correspon-
dence between the BIOME-BGC predicted poten-
tial L of the site (based on long-term climate
averages) and the estimates of actual L from
either 1995 AVHRR or Landsat TM imagery may
not be expected. If any of the sites have been
subject to short-term disturbance factors such as
local drought, fire or harvesting, then a direct
match between the predicted potential and the
actual L will not exist due to reduced canopy
cover below that typical for the site. Analysis of
the 1995 meteorological station data indicates
that 1995 rainfall was similar to the average rain-
fall conditions of the region (Coops and Waring,
2000), but other disturbance factors may influence
this relationship. The strength of the correlations

in Fig. 5(a) and (b), however, indicate that, whilst
there is some variation between predicted and
observed, there is generally a good correspon-
dence with the BIOME-BGC predictions and L
estimates from remote-sensing techniques.

3.5. Py/Pg ratio

One of the major simplifications in the 3-PGS
model that causes some concern among physiolo-
gists is the assumption of a constant R,/Pg (or
Py/Pg) ratio (see Waring et al., 1998). The rela-
tive stability of these ratios is supported by empir-
ical data (Waring et al., 1998; Malhi et al., 1999;
Law et al., 2000) but may vary in different biomes
(Ryan et al., 1997) and justifies further research.

As BIOME-BGC predicts autotrophic respira-
tion, we compared the R,/Pg ratio for all 18 sites.
Fig. 6 shows that the monthly variation for 9
months encompassing the most active period for
the 18 sites ranged from 0.4 to 0.7, with an overall
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average of 0.58 +0.05, in general agreement with
the value 0.53 assumed in 3-PGS.

4. Discussion

Plummer (2000) provides an overview of the
incorporation of remote sensing data into ecologi-
cal process models such as 3-PGS and BIOME-
BGC. Plummer (2000) draws distinctions in the
way remote-sensing data are utilised in these types
of models providing four alternative strategies: to
estimate input variables, to test and validate pre-
dictions, to update or adjust ecological models,
and to apply ecological models to understand
remote sensing responses.

The use of remote sensing in 3-PGS and
BIOME-BGC, as discussed in this paper, demon-
strates two of these four strategies. The use of
AVHRR imagery in 3-PGS is a critical input data
source for driving the model with the input NDVI
corresponding to forcing functions or state vari-
ables in an ecological modelling context
(Jorgensen, 1994). The use of remote sensing data,
in this context, is perhaps the most common way
to link data with ecological models (Plummer,
2000). Initially, in the development of FOREST-
BGC (Running and Coughlan, 1988; Running
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RA / PG Ratio (%)
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and Gower, 1991), remote-sensing data were used
in a similar fashion, but in BIOME-BGC, remote-
sensing data are no longer required as an input;
rather, they are used to test and validate predic-
tions such as comparing predictions of L with the
temporal and spatial variation of NDVI (Running
and Nemani, 1988).

These differences in the use of remote-sensing
data with the two models clearly affect their pre-
dictions, as shown in these results. 3-PGS drives
its canopy dynamics from monthly (or maximum)
NDVI values and thus reflects the actual seasonal
variations in fPAR of the vegetation. BIOME-
BGC, in contrast, generates daily canopy dynam-
ics based on local climate and soil conditions.
This difference is obvious (as shown in Fig. 5)
with 3-PGS providing average monthly predic-
tions, whilst BIOME-BGC provides continual
daily predictions.

The debate surrounding the most appropriate
time step at which to model plant growth is
important (Chen et al., 1999). A primary disad-
vantage of longer time step is the inability to
model stream flow accurately or to distinguish
snow from rain when temperatures oscillate
around freezing. The intensity of storms, and
estimates of canopy interception, however, can be
statistically incorporated into monthly time step

0 . } t
Feb Mar Apr May
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Month

Fig. 6. Mean monthly variation ( + 1 standard deviation) of the R,/Pg ratio averaged for the 18 sites as predicted by BIOME-BGC.
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models. Moreover, suboptimal temperature and
lower solar radiation in the winter reduce errors
in the estimation of Ps at these and higher
latitudes.

A distinct advantage of models with monthly
time steps is that (a) monthly weather records
are more generally available and can be trans-
formed more accurately into derived estimates
of other meteorological variables at monthly
time steps than daily ones; (b) monthly mean
climate can also be interpolated to daily values
using stochastic weather generators; (c) globally,
daily climate data are extremely limited, and
data accuracy can be questionable. Coops et al.
(submitted for publication) evaluated the accu-
racy with which daily and mean monthly values
of APAR VPD, and the number of frost days
in a month can be predicted using only daily
and mean monthly temperature extremes,
knowledge of the global location, and general
equations available from the literature. They
found that APAR_ VPD, and the number of
frost days per month predicted at monthly time
steps with the same input variables gave r? val-
ues >0.9 and average standard errors of (.72
MJ m~2 day—! for APAR, 0.13 kPa for VPD,
and 1.6 days per month for frequency of frost
days. At daily time steps, the same equations
the agreement between predicted and measured
APAR and VPD were lower, with r%s of 0.62
and 0.79, respectively.

In drought-prone areas, such as the Siskiyou
Mountains, it becomes important to obtain a
good estimate of rooting depth, which varies
considerably with topography, soil development
and parent material. We found it necessary also
to make some adjustments for slope position.
Where springs bring water close to the surface,
even on shallow soils, the opportunity of using
finer spatial resolution in satellite detection
would seem feasible, but our experience suggests
that adjusting survey plots to equivalent slopes,
aspects, and elevations via DEMs may be more
appropriate. This involves using automated
search procedures that shift the initial location
of each plot within specified bounds to give a
closer agreement with field estimates of aspect,
slope, and soil water holding capacity. This pro-

cess overcomes many problems associated with
correctly registering the precise location of field
plots upon digitized topographic and soil maps
and allows representative environmental regimes
to be extrapolated across landscapes (Coops,
2000).

As soil water becomes less limiting, fertility
becomes more important in restricting growth.
Even with more detailed soil surveys, we might
find it difficult to assess the availability of nutri-
ents to trees. In fact, in many cases, where at-
mospheric deposit or intensive plantation
management is practised, as in parts of the
United Kingdom, it is more rewarding to obtain
good climatic data and assess through modeling
the potential maximum theoretical yields, com-
pared to those measured (Waring, 2000).

Alternatively, some measure of total canopy
nitrogen content would be valuable and can be
obtained, at least for closed canopy forests, with
fine-spatial resolution optical sensors (Matson et
al., 1994). It may be possible to obtain remotely
sensed estimates of canopy quantum efficiency
from satellite sensors through a correlation with
chlorophyll concentrations or total nitrogen con-
tent. To date, however, only aircraft have car-
ried a fine-resolution spectrometer capable of
resolving biochemical constituents of foliage
from space (Matson et al., 1994; Smith and
Curran, 1995; Martin and Aber, 1996).

There is little doubt that, in the future, it will
be possible to obtain improved estimates of

fPAR and other canopy properties, perhaps

even measures of changes in canopy height and
total above-ground biomass using LIDAR, but
to estimate net carbon exchange, net accumula-
tion in vegetation and soils, along with hydro-
logic properties, we will continue to be
dependent on improved and widely tested mod-
els at a variety of time steps. Toward this end,
it would be desirable to establish additional
well-instrumented sites across broadly different
landscapes and investigate how well various
models generate reliable climatic data and pre-
dict measured seasonal variation in important
ecosystem processes.
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