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Abstract

With the expectation of major shifts in climate, ecologists have focused attention on developing predictive relationships between current
climatic conditions and species diversity. Climatic relationships appear best defined at regional rather than local levels. In reference to tree
diversity, process-based models that express gross primary production (GPP) as an integrated function of climate seem most appropriate. Since
2000, NASA’s MODIS satellite has provided composite data at 16-day intervals to produce estimates of GPP that compare well with direct
measurements. The MODIS enhanced vegetation index (EVI), which is independent of climatic drivers, also appears a good surrogate to estimate
seasonal patterns in GPP. In this paper we identified 65 out of 84 delineated ecoregions distributed across the contiguous U.S.A., within which
sufficient (=200) Federal Inventory and Analysis survey plots were available to predict the total number of tree species, which varied from 17 to
164. Four different formulations of EVI were compared: The annual maximum, the annual integrated, the growing season defined mid-point and
growing season averaged values. The growing season mid-point EVI defined the beginning and end of the active growing season. In all
formulations of EVI, a polynomial function accounted for about 60% of the observed variation in tree diversity, with additional precision
increasing to 80% when highly fragmented ecoregions with <50% forest cover were excluded. Maps comparing predicted with measured tree
richness values show similar patterns except in the Pacific Northwest region where a major extinction of tree genera is known to have occurred
during the late Pliocene. The extent that these relationships remain stable under a changing climate can be evaluated by determining if the MODIS
climate-driven estimate of GPP continues to match well with EVI patterns and systematic resurveys of forest vegetation indicate that tree species
are able to adjust rapidly to climatic variation.
© 2006 Published by Elsevier Inc.
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1. Introduction

Over the last few decades, there has been an expanded effort
to predict biological diversity as a function of climate at both the
regional (Currie & Paquin, 1987; Hawkins et al., 2003; O’Brian,
1998; Venevsky & Veneskaia, 2003) and global scale (Gaston,
2000; Kleidon & Mooney, 2000; Latham & Ricklefs, 1993).
This expanded interest is justified on the basis of accelerated

* Corresponding author. Tel.: +1 541 737 6087; fax: +1 541 737 1393.
E-mail addresses: Richard. Waring@orst.edu (R.H. Waring),
nicholas.coops@ubc.ca (N.C. Coops), Weihong.Fan@stockton.edu (W. Fan),
jnightingale@forestry.ubc.ca (J.M. Nightingale).

0034-4257/$ - see front matter © 2006 Published by Elsevier Inc.
doi:10.1016/j.rse.2006.05.007

extinction and the expectation that a major reconfiguration of
vegetation patterns is predicted during this century (Iverson &
Prasad, 2001). The paleobotanical record provides evidence that
a changing climate obliterates major associations and causes
new ones to be formed (Axelrod et al., 1991). For this reason
most analyses have been based on species range maps rather
than plant associations.

Although there is considerable debate about the proper scale
of analysis and the extent that causal relationships associated
with competition and disturbance apply over a range of spatial
scales (Huston, 1999; O’Brian, 1998; Whittaker & Field, 2000),
there is a consensus that historical factors must be recognized to
explain differences in the pool of species present in different
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locations that have similar climates (Qian & Ricklefs, 2000),
and in the distribution of endemics (Whittaker & Field, 2000).
Conventionally, climatic relationships with species diversity are
first tested, and if inadequate, historical factors are then
investigated. At regional scales, the degree of disturbance and
fragmentation of the landscape may still apply, but these factors
are generally muted in comparison to climatic effects (see
review by Sarr et al., 2005).

Temperature and moisture are the two variables encom-
passed in most climatic analyses, usually in the form of annual
precipitation and evaporation (potential or actual).

Ecologically, one would prefer to analyze climatic effects
seasonally and in reference to how organisms directly respond
(Mason & Langenheim, 1957). The integrated response of
vegetation to climate is expressed as growth, or net primary
production, NPP. A direct correlation between productivity and
species richness is, not surprisingly, generally better than those
derived with annual indices of climate (Hawkins et al., 2003).

The modeling of productivity as a function of climate is
embedded in process-based models that predict CO, and water
vapor exchange as well as the cycling of carbon and nutrients
within and through ecosystems (see review by Landsberg,
2003). Through sensitivity analyses, the relative importance of
various climatic factors on production can be assessed and
mapped spatially (e.g., Nemani et al., 2003). Such process-
based models include seasonal water balances and recognize the
importance of radiation interception and utilization by vegeta-
tion. Process-based growth models are particularly well
developed and tested for forests, which leads us to the premise:
That tree diversity should be predictable if dependent on current
climatic patterns. The extent that such relationships remain
viable under a rapidly changing climate, however, will require
periodic retesting.

We are fortunate in the United States to have access to survey
records acquired by the Federal Inventory and Analysis (FIA)
program (http://www.fia.fs.fed.us/) that systematically record
the composition of forest vegetation across the country. These
surveys are much more accurate than species range maps and
offer a sound basis for developing and testing correlations
between tree richness and productivity at different spatial scales,
now and in the future.

Although the productive capacity of the land can be fairly
accurately predicted with process-based models if sufficient
information on soils and climate is available (Coops & Waring,
2001; Coops et al., 2001; Ollinger et al., 1998), such
information is often lacking or is imprecise (Swenson et al.,
2005). Alternatively, we might consider modeling GPP, as it is
approximately twice the value of NPP (Gifford, 2003; Waring et
al., 1998). In the states of Oregon and Washington, GPP,
estimated from extrapolation of climate and soil data, accounted
by itself for 80% of the observed variation in tree richness at a
spatial resolution of 10 km (Swenson & Waring, in press).

Satellite-derived estimates of gross primary production
(GPP) are readily available as products generated using
NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS). Alternatively, we chose to use the MODIS enhanced
vegetation index as a surrogate for GPP that is independent of

climatic data and therefore accurate, without extrapolation to a
spatial resolution of 1 km. Both estimates of GPP are in general
agreement where they have been compared with values
generated at sites where CO, and water vapor exchange were
continuous monitored (Rahman et al., 2005).

In this paper we test the extent that EVI correlates with tree
richness data from 65 recognized ecoregions across the
contiguous U.S.A. where FIA survey data were adequate to
predict the pool size of tree species present.

2. Methods
2.1. Ecoregions

To obtain a general description of the ecological zones across
the contiguous USA we chose the level III classification of
ecological regions of North America available from the US
Environmental Protection Agency (http://www.epa.gov/wed/
pages/ecoregions.htm). Earlier attempts at classifying ecore-
gions proved too broad in that many species were included in
ecoregions with ranges that did not overlap. The level III
classification defines 84 ecoregions within the boundaries of the
48 contiguous states at an approximate scale of 1:30 million. We
tested the assumption (CEC, 1997) that each ecoregion could be
considered unique, based on similarities in climate, geology,
landforms, and flora by confirming that as few as 200 survey
plots would provide a good estimate of the total pool of tree
species present within an ecoregion.

The amount of forested area varies considerably by
ecoregion. To ensure that only forested pixels were used in
the analysis, we utilized a second land cover data set derived
and distributed as part of the MODIS standard data products.
This land cover classification (MOD12Q1, Collection 3,
developed by the University of Maryland, UMD (Carroll et
al., 2003; Hansen et al., 2000), is also utilized in the analysis of
the MODIS GPP product (Zhao et al., 2005). The UMD
classification is pixel-based at 1000 m spatial resolution and
defines 15 classes covering the major biomes across the globe.
To restrict our analysis to forested environments, we combined
five forest classes (evergreen needleleaf, evergreen broadleaf,
deciduous needleleaf, deciduous broadleaf, and mixed forests)
into one mask which was then applied in all subsequent
processing. The UMD classification is relatively stable, a
desirable feature for our analysis because tree survey data are
acquired over a decade.

2.2. Tree richness data

Tree richness values for ecoregions were computed from a
total of 174,207 FIA field surveys (44,408 fixed and 129,799
variable area plots). The number of FIA plots present averaged
1540 per ecoregion with a range from 0 to 18,982 across the 84
ecoregions.

To attain a good estimate of tree richness for the largest
number of ecoregions, we restricted our analysis to 65
ecoregions with 200 or more FIA field survey plots. With a
sample size of 200, an asymptote in species number was
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generally approached where there was <1% increase in species
number with an addition of 10 plots and a log-linear relation
between sample size and species richness accounted for ~95%
of the variation .In two ecoregions, a slightly larger sample was
required to meet the standard. Only in ecoregion 19, represent-
ing diverse topography in the Waschatch and Uinta Mountains
of Utah, were we unable to obtain an 7> above 0.88 using the
full complement of 1505 plots.

2.3. MODIS EVI data

The Moderate Resolution Imaging Spectrometer (MODIS),
on board NASA’s TERRA (since 2000) and AQUA (since
2002) satellites, is designed to address questions about global
carbon dynamics (Heinsch et al., in press). These sensors
provide near daily coverage of the globe at a range of spatial
resolutions. With 36 spectral bands on each instrument, a
number of MODIS products have been developed to charac-
terize atmosphere, ocean, and land surface properties (Justice &
Townshend, 2002; Justice et al., 1997). Together, these MODIS
products provide significant refinements in spectral, radiomet-
ric, and geometric properties compared to previously available
data sets with similar spatial resolution (Justice & Townshend,
2002; Zhang et al., 2004).

Two vegetation indices are routinely produced from the
MODIS sensor. For our investigation we chose the enhanced
vegetation index, EVI, instead of the more widely used
normalized difference vegetation index, NDVI. EVI is less
sensitive to soil and atmospheric effects than NDVI because it
incorporates blue spectral wavelengths. As a result, EVI
remains sensitive to increases in canopy density beyond
where NDVI becomes saturated (Huete et al., 2002). EVI is
calculated as:

NIR — R

EVI=G
NIR+C/R—-C,B+L

where NIR, R, and B are reflectances in the near infrared, red,
and blue bands respectively; C; and C, are aerosol resistance
coefficients; G is a gain factor, and L is the canopy background
adjustment that addresses nonlinear, differential NIR and red
radiant transfer through a canopy. The coefficients adopted in
the EVI algorithm are, L=1, C;=6, C,=7.5, and G=2.5
(Huete et al., 2002).

MODI13 EVI images, composited at 16-day intervals, were
downloaded in tiles at 1-km resolution for the period between
June 2000 and December 2004 for the contiguous United States,
and mosaicked together using the MODIS re-projection tool. A
16-day composite interval has proved adequate to smooth out
short-term variations in atmospheric properties and registration
errors while offering sufficient resolution to capture trends over
the growing season (Rahman et al., 2005).

An average EVI product was then produced that further
smoothed interannual seasonal variation captured over the
period that MODIS data were available.

The EVI performs well and produces consistent values even
when the atmosphere has higher than normal aerosols and

smoke (Miura et al., 1998). The EVI also minimizes residual
aerosol effects resulting from the dark target-based atmospheric
correction (DTAC) utilized in the MODIS surface reflectance
products (Miura et al., 2001). In addition, where a heavy
atmosphere exists, cloud contamination routines are applied in
the MODIS processing of images, reducing the probability of
significant bias in the resulting EVI values. Prior to analysis of
the images we visually assessed the derived composite EVI
values to ensure data quality. In this way we excluded any large-
scale patterns associated with cloud contamination.

2.4. Derivation of growing season EVI surrogates for GPP

Many approaches have been developed to interpret pheno-
logical events from temporal variation in vegetation indices.
From analyses of time series of vegetation indices it is possible
to extract key dates, such as the start and end of the growing
season. Given that satellite imagery is used to infer these
phenological events, we recognize that each pixel represents an
aggregate greenness value, which may include, in the case of
forests, an overstory of trees, and an understory of shrubs,
herbs, and grasses. Although this makes it difficult to
distinguish the composition of vegetation, satellite-derived
greenness estimates have the advantage of being fairly stable, in
spite of local changes in the composition of vegetation
associated with disturbance (Franklin et al., 1997; Goward et
al., 1985).

Based on previous studies, we identified four separate
formulations of the averaged 16-day EVI layers that seemed
useful to compare: (1) the maximum, (2) the seasonal mid-point
value, (3) the average value for the growing season, and (4) the
annually integrated value (Fig.1).

2.4.1. Maximum annual EVI

In the Pacific Northwest, where evergreen coniferous forests
generally dominate the landscape, the maximum EVI is closely
correlated with mean annual growth of forests (Waring et al.,
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Fig. 1. Graphic representation of the four formulations EVI (derived from 16 day
composites) used to predict tree richness: (A) maximum EVI; (B) seasonal mid-
point EVL; (C) mean EVI through growing season; and (D) annually integrated
EVI. The mid-point values define the beginning and end of the growing season.
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2006). This correlation reflects an underlying relationship
between the density of canopy that can be supported in any
given environment and the photosynthetic capacity of the
canopy (Bolstad et al., 2001; McNulty et al., 1996; Waring et
al., 1995). Although the maximum EVI is sensitive to recent
disturbance, it has the advantage of being unambiguously
defined regardless of the type of vegetation present.

2.4.2. Seasonal midpoint EVI

The seasonal midpoint (or half-maximum) EVI was
designed to predict the initial leaf expansion of broadleaf
forests (Schwartz et al., 2002; White et al., 1997). The
method first calculates the annual minimum and maximum
EVI for each pixel and the midpoint is then calculated and
added to the minimum. This threshold EVI has the advantage
over other formulations in that it is sensitive to site-specific
variations in the range of EVI and may be more sensitive to
local variation in canopy leaf area and chlorophyll
concentrations.

2.4.3. Mean growing season EVI

Based on the work of White et al. (2002), we extended
the seasonal midpoint EVI technique to define a mean
growing season EVI. As indicated in Fig. 1, the seasonal
midpoint EVI value represents the threshold above which
vegetation is assumed to be actively growing. The date when
the temporal EVI sequence crosses this threshold is deemed
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the start of the growing season, and likewise, once the EVI
falls below the threshold, that defines the end of the growing
season. To determine the mean value, we summed the EVI
values recorded for each 16-day period above the threshold
and computed the mean EVI for the active part of the
growing season.

2.4.4. Integrated annual EVI

Goward et al. (1985) demonstrated a linear relation between
values of NDVI integrated over a 30 week period and NPP for
12 major vegetation types across North America. We calculated
a similar integrated value when EVI was above zero any time
throughout the year (Fig. 1).

2.5. Statistical analysis

Statistical models were developed using stepwise linear
regression, based on linear and polynomial transformations of
total tree richness values and the mean and standard deviation of
the four EVI metrics within each of the level III ecoregions
(StatSoft, 2000). Models were developed based on summaries
from all forested ecoregions with adequate FIA survey data
(N=65), and those ecoregions containing >50% forested lands.
Both linear and non-linear regression models were tested. The
most appropriate model was determined based on its standard
error, level of statistical significance, and coefficient of
determination (+%).
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Fig. 2. Mid-point (half-maximum) MODIS EVI derived from 16 day EVI composites (2000-2004). The 84 U.S. Environmental Protection Agency (EPA) level III

ecoregions are identified by number with their boundaries delineated.
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3. Results and discussion
3.1. Ecoregions maximum EVI values and forest cover

In Fig. 2, where level III ecoregions are mapped and
numbered, the seasonal mid-point (half-maximum) EVI values
are represented; other configurations of the index present
similar patterns. The darker green regions, representing higher
values, are concentrated east of the Mississippi River with the
exception of the Pacific Northwest and parts of California west
of the crest of the Sierra Mountains. More than a third of the 65
ecoregions with adequate numbers of FIA plots had 10% or less
of their total area forested (Fig. 3). The likelihood, that reduced
forested land area might affect tree diversity within an ecoregion
is obviously worth consideration.

3.2. Tree richness patterns and EVI

In the statistical comparison of the four EVI formulations
presented in Table 1, we found that the forward-stepwise
regression procedure consistently selected a polynomial
expression over a linear fit. Although spatial variation in
EVI occurs within ecoregions, accounting for this variation did
not improve the predictive equations significantly. When data
from all 65 ecoregions were included, the four formulations of
EVI accounted for between 57% and 63% of the observed
variation in tree richness. The four EVI formulations are highly
correlated with one another (#>0.9). The model using mid-
point EVI values improved the most with exclusion of
ecoregions with <50% forest cover, particularly in capturing
the high end of tree richness values. The integrated annual EVI
did not do quite as well (+*=0.76 vs. 0.80), perhaps because in
areas where temperatures drop below freezing, evergreen
vegetation still exhibits a high EVI wvalue. Excluding
ecoregions with <50% forest cover consistently improved
the prediction of tree richness with all EVI formulations to the
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Fig. 3. The area forested within the 65 ecoregions averaged between 30% and
40%, but >36% of the ecoregions contained <10% forest cover according the
MODIS University of Maryland (UMD) land classification (Carroll et al.,
2003).

Table 1
Statistical evaluation of different functions of EVI to predict tree richness
patterns

EVI Type Adjusted Standard error N
2 (number of species)
Maximum 0.63 (**) 24 65
annual EVI 0.69 (**) 22 62 (less 1-3)
0.81 (¥**) 22 20 (forest >50%,
1-3)
Integrated 0.62 (**) 25 65
annual EVI 0.64 (**) 24 62 (less 1-3)
0.76 (**) 19 20 (forest >50%,
1-3)
Average 0.62 (**) 25 65
EVI during 0.70 (**) 22 62 (less 1-3)
growing season 0.82 (**) 17 20 (forest >50%,
1-3)
Seasonal 0.57 (**) 26 65
mid-point EVI 0.75 (**) 19 62 (less 1-3)
0.80 (***) 18 20 (forest >50%,
1-3)

Significance (*) 0.05 level, (**) 0.01 level, (***) 0.001 level.
Linear regressions were also tested but accounted for less variation than the
polynomial functions.

extent they accounted for ~80% of the variation in tree
richness across ecoregions. The polynomial relation between
mid-point EVI and tree richness for 62 forested ecoregions is
presented in Fig. 4.

Three ecoregions (1, 2, and 3), all located in the Pacific
Northwest, stand out as having less than half the tree species
predicted by the mid-point EVI model (Fig. 5). Excluding
these three ecoregions, all heavily forested, raised the »* for
the mid-point EVI relation from 0.57 to 0.75 (Table 1). All
formulations of EVI significantly overestimated tree richness
in these three ecoregions (e.g., compare Fig. 6A with B), as
did analyses based on species range maps and correlations
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Fig. 4. The seasonal mid-point EVI, equivalent to the value used to define the
beginning and end of the growing season, provides the best fit to the data when
three Pacific Northwest ecoregions (+), were excluded. ) Tree #=—18.1
+586*%, where x=seasonal mid-point EVI, /*=0.75. The slope of the
polynomial regression increases still more when the analysis is further restricted
to those ecoregions with >50% forest cover (*=0.80).
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Fig. 5. Although predictions of tree richness vary from that observed in many ecoregions, the over prediction of tree richness in ecoregions 1-3 stands out. These
ecoregions are located in the Pacific Northwest where major extinction of the flora occurred under a cooler and drier Pliocene environment than exists today (Waring

and Franklin, 1979).

with average annual estimates of water vapor exchange
(Currie & Paquin, 1987). In the Pacific Northwest, present
climatic conditions are favorable to support a richer flora
than is now present. During the late Pliocene, more than 40
Angiosperm tree genera were represented in the flora of the
Pacific Northwest, but massive extinction eliminated most of
these under a colder and drier environment than exists today
(Waring & Franklin, 1979). As Whittaker and Field (2000)
suggested, one can identify regions where evolutionary
history is of particular importance by the degree that those
regions differ from general relations obtained between
climatically-related indices and biodiversity.

Ecoregions with >130 tree species (maximum in ecoregion
65 with 164 species, Fig. 5) are located in the southeastern U.
S., with regional richness decreasing in all directions (Fig.
6A). West of the Mississippi River, tree species richness is
generally low, with less than 30 species in the Southwest
(minimum in ecoregion 80 with 17 species, Fig. 5)
ecoregions, and fewer than 60 species in California and the
Pacific Northwest. The relative errors in predicted tree
richness for 65 ecoregions are presented in Fig. 7. The
Pacific Northwest represents a region with a much less rich
tree flora than predicted whereas the Midwest has signifi-
cantly more tree species than the model predicts. These
differences appear independent of the degree to which forest
cover is present because the Pacific Northwest has >50%
forest cover whereas the Midwest ecoregions are generally
<10% forested. Nonetheless, when the relationship between
EVI and tree richness is restricted to areas with >50% forest
cover, excluding the Pacific Northwest, all configurations of
EVI improve to account for ~80% of the variation, with
closer agreement to measured richness values (Table 1).

Initially, we were concerned that variation in the type of
forest cover might affect the averaged EVI values derived for
each ecoregion. This may be the case for some configurations of
the index, particularly the maximum value. In no ecoregion,

however, was one type exclusively represented; on average, the
most abundant type represented 68% of the total forest cover.
The mid-point EVI, and to a lesser extent the averaged values,
take into account differences that may exists in defining the
growing season and canopy photosynthetic activity. The
annually integrated EVI does not specifically recognize the
growing season but is certainly influenced by the presence of
deciduous hardwoods.

The general relation between productivity estimated using
the seasonal mid-point EVI and tree richness expressed at the
ecoregion level was significantly non-linear but not parabolic as
has been observed with finer grain analyses (e.g., Swenson &
Waring, in press). In finer scale analyses, the most productive
and least productive sites are included in the analysis. The
possibility that a parabolic relationship between productivity
and tree richness was masked by our averaging of estimates of
productivity for entire ecoregions will be evaluated in a separate
paper based on more detailed analyses at a scale of 3030 km
units. We will also determine the consistency between the EVI-
derived estimates of GPP and MODIS products that depend on
climate data. If a consistent relationship exists between the two
indices of GPP, we would expect concurrent changes in the
values with shifts in regional climate. The extent that relation-
ships defined under present climatic conditions remain valid
will requires periodic analysis with updated field survey data.

4. Conclusions

Our analysis indicates that a polynomial relation exists
between four formulations of EVI and tree richness measured
across forested ecoregions in the contiguous U.S.A. We
interpret EVI as a good surrogate for productivity. The
predictive power of the EVI models increased significantly
from ~60% to ~80% when those ecoregions with <50%
forested were excluded. Three ecoregions in the Pacific
Northwest stood out as exceptions for which all formulations
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Fig. 6. (A) Map of observed tree richness delineated by ecoregion into 5 classes derived from analysis of >200 FIA field survey plots in each of 65 ecoregions with
forest cover. (B) Map of predicted tree richness delineated by ecoregions into the same 5 classes using the polynomial relation with mid-season EVI shown in Fig. 3.
Note that the model consistently overestimates observed tree richness values in the Pacific Northwest region.
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Fig. 7. Deviation in predicted tree richness using the seasonal mid-point EVI formulation for 65 ecoregions with >200 FIA survey plots.

of EVI predicted significantly more species than are present. The
evolutionary history of that region offers an explanation for the
anomaly. Remotely sensed vegetation indices, such as EVI and
the MODIS-derived GPP, offer region-wide estimates of
potential productivity that are equivalent, and possibly better
than can be obtained from localized field sampling or from
process-based models that are dependent on extrapolation of
climatic and physiographic information. If relationship between
tree diversity and productivity remain viable over time, the
establishment of correlations between productivity and tree
richness offers promise to help evaluate the effects of future
changes in climate at the spatial scale of ecoregions.
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